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Extended magic phase in twisted graphene multilayers

D. C. W. Foo ,1,* Z. Zhan ,2,† Mohammed M. Al Ezzi,1,3 L. Peng ,3 S. Adam ,1,3,4,5 and F. Guinea2,6

1Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546
2IMDEA Nanociencia, 28049 Madrid, Spain

3Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542
4Department of Materials Science and Engineering, National University of Singapore, Singapore 117575

5Yale-NUS College, Singapore 138527
6Donostia International Physics Center, 20018 San Sebastián, Spain

(Received 29 May 2023; revised 4 January 2024; accepted 8 January 2024; published 13 February 2024)

Theoretical and experimental studies have verified the existence of “magic angles” in twisted bilayer graphene,
where the rotation angle between layers gives rise to flat bands and consequently exotic correlated phases.
Recently, magic-angle phenomena have been predicted and reported in other graphene systems, for instance,
multilayers with alternating twist angles and trilayers with identical twist angles between consecutive layers. In
this paper, we present a comprehensive theoretical study on flat bands in general twisted graphene systems. Using
the continuum model in the chiral limit, we demonstrate the existence of flat bands in a variety of multilayers
where the ratios between twist angles are rational and develop a framework for predicting magic-angle sets
in trilayer configurations with arbitrary ratio of rotation angles. Our results are corroborated by tight-binding
calculations. Remarkably, the technique we developed can be extended to systems with many layers of graphene.
Our results suggest that flat bands can exist in graphene multilayers with angle disorder, that is, narrow samples
of turbostatic graphite, point to the existence of a continuous, connected magic surface in trilayer configuration
space, and compare favourably with contemporary experiments on trilayer moiré quasicrystals.
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I. INTRODUCTION

Twisted bilayer graphene (tBG) has proven to be a fertile
platform for condensed-matter physics studies owing to the
remarkable tunability of the Fermi velocity and electronic
structure through the twist angle [1]. In particular, at the
“magic angles” [2] in tBG, θM

tBG ≈ 1.1◦, the Fermi velocity
vanishes, allowing for strongly correlated phases where inter-
actions dominate over the kinetic energy [3,4].

This has led to a resurgence of interest in moiré systems,
including but not limited to Van der Waals heterostructures
[5–8], transition metal dichalcogenides [9–12], and graphene
multilayers [13–16]. One particularly successful avenue of
investigation has been the extension of the arguments demon-
strating the existence of magic angles in tBG [17,18] to
graphene multilayers [19], which found simple geometric
relations between the bilayer and multilayer magic angles,
predictions that were later verified experimentally [20–22].
Later. numerical studies have built on these foundations,
demonstrating for example that the existence of flat bands is
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robust against perpendicular magnetic fields [23] and asym-
metry of the layer parameters [24], and that peaks in the
density of states (DOS) appear, and are resistant to relax-
ation [25], for trilayer configurations beyond the canonical
alternating-twist case [26]. Recent work has predicted magic
angles in the equal twist trilayer graphene case [27], and a
magic line, with magic angles as a function of pressure, in
twisted WSe2 [28], suggesting that similar extended magic
surfaces may exist in the generalized configuration space of
graphene multilayers. Previous work has typically had a lim-
ited focus on specific, highly symmetric trilayer arrangements
[19,27] or else has confined exploration to particular slices
of configuration space that were already known to contain
magic angles [26]. In this work we demonstrate the exis-
tence of flat bands in multilayers with generic, commensurate
twist angles and provide an approximate analytic continuation
to the incommensurate case, indicating an extended N − 2-
dimensional magic surface in the space of N − 1 twist angles
characterizing N layers, with particular emphasis on generic
twisted trilayer graphene (tTG).

A prior study [19] noted that in the particular case of
unshifted, alternating twist graphene multilayers, the Hamil-
tonian may be exactly decomposed into a direct sum of bilayer
graphene Hamiltonians (with an additional monolayer for odd
number of layers), with the moiré potential identical up to
a scalar multiple. This allows one to directly read off the
magic angles of multilayer stacks. In contrast, other trilayer
configurations have more complex effective moiré potentials,
though magic angle physics may still be possible [29]. In
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particular, a strongly correlated superconducting state has
been observed in a trilayer system with incommensurate twist
angles [30].

We note also for completeness related work in the general
field of double moiré systems, particularly that of tBG on
hexagonal boron nitride (hBN) which indicates narrow bands
may persist with the presence of a substrate [31–33], and
of hBN encapsulated graphene [34], where the two similar
but incommensurate moiré potentials lead to fractal structure
in the band gaps. Nevertheless, these may be sufficiently
distinguished from the present study in the first instance as
they were not primarily concerned with finding flat bands and
magic angles at all, and in the second due to key differences
between graphene and hBN. For example, the low-energy
physics of these systems are typically dominated by the
graphene layers and associated wave functions, with the hBN
only serving as an intermediary [35]. Correspondingly, no
nonmonotonic behavior of Fermi velocity or bandwidth is
expected in monolayer graphene/hBN systems [36], while
nonmonotonic, that is, magic physics is the hallmark of
graphene multilayers.

II. MOIRÉ LATTICES IN TWISTED GRAPHENE
TRILAYERS AND IN OTHER TWISTED STACKS

The electronic structure of a twisted bilayer can be rea-
sonably approximated by a periodic moiré structure [1,2],
irrespective of whether the two layers are commensurate at the
atomic scale. The situation is more complex in twisted stacks
with more than two layers [26,37–43]. In a trilayer, for in-
stance, two twist angles between nearest-neighbor layers can
be defined, θ12 and θ23, shown in Fig. 1(a). Except for the case
mentioned above of multilayers where the twist angle is of
equal magnitude and opposite sign between nearest-neighbor
pairs of layers [19], no simple global moiré structure can be
defined.

An approximate moiré lattice can be defined if the relative
angle between the Brillouin zones defined by the twist angles
between different pairs of layers is neglected [39,41,42]. For
instance, in a trilayer with two different twist angles, θ12, θ23,
this approximation becomes exact when θ12 = θ23 in the limit
θ12 → 0, although corrections [43] are required for physi-
cally relevant angles, θ12, θ23 ≈ 1◦. It is worth noting that
this approximation, for a trilayer, has a dependence not only
on the angles θ12, θ23 but also on the relative displacement
of the moiré potentials, D illustrated in Fig. 1(b) [40]. The
dependence is periodic on D, with wavelength of the order of
the moiré length scales.

It can be shown [44] that the approximation mentioned
above defined by a moiré lattice commensurate with the two
twist angles and a displacement between the top and bot-
tom layers describes locally the full problem of the trilayer.
For the case of approximately commensurate twist angles,
θ12 ≈ mθ0, θ23 ≈ nθ0, where m, n are coprime integers, the
interlayer tunneling terms in the trilayer continuum Hamil-
tonian can be written as containing two periodicities: (i) the
periodicity, �m, of the moiré problem obtained by neglect-
ing the angle between the two Brillouin zones defined by
θ12, θ23, of order d/θ0, where d is the lattice constant of
graphene, and (ii) a periodicity, �m2 obtained by modulating

FIG. 1. Moiré-of-moiré periodicity. Schematic illustrating the
trilayer parameters (a) twist angle pairs and (b) the moiré displace-
ment D. The moiré unit cell of tBG with θ12 is outlined by a rhombus
with alternating colors red and blue and θ23 with colors red and green.
The rhombus vertices lie at AA stacking regions of the respective
layers. (c) Sketch of connected momentum states between layers
with misaligned moiré patterns (orange and purple), resulting in a
moiré-of-moiré modulation. Large angles θ12 = 4◦, θ23 = 3◦ are used
for clarity, and less misalignment is expected for real magic-angle
samples. The length scale of this modulation is determined by the
closest approach of second layer lattice sites formed from the two
moiré patterns, indicated with a dotted line. The local expansion
used in numerical calculation neglects this misalignment and, for
commensurate angles, collapses this distance to zero. (d) Log-scale
plot of the moiré-of-moiré length scale, lm2, in microns, as a function
of twist angles. The left diagonal in white marks the line θ12 = −θ23,
where there is no misalignment and lm2 diverges. lm2 also diverges
when either angle is zero and there is no moiré-of-moiré pattern to
speak of.

the displacement D, over a larger unit cell whose dimensions
scale as d/θ2

0 . Each tBG pair in tTG defines a momentum-
space moiré unit cell, purple and orange in Fig. 1(c), whose
misalignment leads to misalignment of the moiré lattices,
shown with the black lines and the finite δk. Neglecting this
moiré misalignment forces the black lines to coincide, and
for commensurate angles forces δk = 0. δk therefore is con-
jugate to �m2. For small values of θ0, shown in Fig. 1(d),
this scaling behavior implies that �m � �m2, as �m2 can reach
values of microns for θ0 � 1◦. Further details may be found in
Appendix C.

It is worth noting that small and layer-dependent biaxial
strains can exactly align the Brillouin zones associated to
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different twist angles, θ12, θ23, so that �m2 → ∞ and the ap-
proximation which makes use of a single moiré lattice defined
by �m becomes exact, see Ref. [45]. These strains imply a
small relaxation of the lattice [45]. This analysis has been ex-
tended to some commensurate cases of trilayers with unequal
twist angles [46].

III. CHIRALLY SYMMETRIC CONTINUUM MODEL
AND NECESSITY OF NUMERICAL COMPUTATION

We use a chirally symmetric version of the Bistritzer-
Macdonald continuum model [2] that is exactly computable
for commensurate angle pairs (θ12, θ23) and approximately
solvable for incommensurate angle pairs. These results will
later be supplemented by calculations on a tight-binding
model [26] that we extend to deal with general angle and layer
displacement. See Appendix D for details of the tight-binding
model.

We begin with the tBG Hamiltonian

HtBG =
[

0 D†
2 (r, α)

D2(r, α) 0

]
AB

, (1)

where the subscript AB indicates sublattice space and the
zeros on the diagonals are the natural consequence of using
the chirally symmetric model. The layer space submatrix is
given by

D2(r, α) = 12∂̄ + α

[
0 U (r)

U (−r) 0

]
L

, (2)

where ∂̄ = −i(∂x + i∂y), 12 is the rank-2 identity matrix, α ≡
4πvF /dw(2 sin θ/2) ≈ 4πvF /dwθ for vF the Fermi velocity,
d the graphene lattice constant, w the interlayer hopping, θ

the twist angle and we take the small-angle approximation.
U (r) = ∑

j=1,2,3 ei 2π ( j−1)
3 eig j ·r is the moiré potential with g1 =

4πθ
3d (0, 1), g j = R j−1

2π/3g1 the vectors connecting each moiré K
point to the three nearest K′ points, and Rφ rotates a vector by
angle φ. The flat band equation is then D2(r, α(n)

2 )ψ (n)(r) = 0
or, in terms of the explicit components, the set of equations

∂̄ψ
(n)
1 (r) + α

(n)
2 U (r)ψ (n)

2 (r) = 0, (3)

α
(n)
2 U (−r)ψ (n)

1 (r) + ∂̄ψ
(n)
2 (r) = 0, (4)

and the solutions for ψ (n)(r) and α
(n)
2 are known [18]. The chi-

rally symmetric tTG Hamiltonian may similarly be expressed
in the form

HtTG =
[

0 D†
3 (r, D, α, η)

D3(r, D, α, η) 0

]
AB

, (5)

where the three-layer submatrix is given by

D3(r, D, α, η)

= 13∂̄ + α

⎡
⎣ 0 U (r) 0

U (−r) 0 U (η(r − D))
0 U ( − η(r − D)) 0

⎤
⎦

L

,

(6)

where α and the g j of U are now defined in terms of
θ12 and η ≡ θ23

θ12
is the angle ratio. For now we neglect the

small rotation of the second moiré potential due to incom-
mensurability of the twists, though accounting for this only
strengthens the argument to come. The flat band equation is
now D3(r, D, α

(n)
3 , η)� (n)(r) = 0, which may be written ex-

plicitly in component form as

∂̄�
(n)
1 (r) + α

(n)
3 U (r)� (n)

2 (r) = 0, (7)

∂̄�
(n)
2 (r) + α

(n)
3 U (−r)� (n)

1 (r) + α
(n)
3 U (η(r − D))� (n)

3 (r)

= 0, (8)

∂̄�
(n)
3 (r) + α

(n)
3 U ( − η(r − D))� (n)

2 (r) = 0. (9)

If we wish to establish a connection to tBG in the manner of
previous studies [19,27], then the only ingredients available
to us with which to construct � (n) are the components of the
tBG flat band spinor, ψ

(n)
1 (r), ψ

(n)
2 (r), ψ

(n)
1 (η(r − D)), and

ψ
(n)
2 (η(r − D)). We note here that the set of these functions,

along with U (r), U (−r), U (η(r − D)), and U ( − η(r − D)),
is linearly independent unless both |η| = 1 and D equal to
either zero or a moiré lattice vector.

From Eq. (3) and Eq. (7), �
(n)
1 can only contain terms in-

volving ψ
(n)
1 (r), so �

(n)
2 must contain terms involving ψ

(n)
2 (r)

and must not contain terms involving either ψ
(n)
1 (η(r − D)) or

ψ
(n)
2 (η(r − D)); similarly from Eq. (4) and Eq. (9), �

(n)
3 can

only contain terms involving ψ
(n)
2 (η(r − D)), meaning �

(n)
2

must contain terms involving ψ
(n)
1 (η(r − D)) and must not

contain terms involving either ψ
(n)
1 (r) or ψ

(n)
2 (r), contradict-

ing the first statement. It is therefore not possible for solutions
to the tTG flat band equation at general η, D to be constructed
solely from those of the tBG flat band solution, and there
is therefore no correspondence between any existing magic
angles for general η, D, tTG and those of tBG. Furthermore,
as the moiré potential matrix, the off-diagonal parts of D3, is
singular, one cannot find a unique solution for the perturba-
tion to the nth magic angle in response to small η or D as
some linear function of the set of |η| = 1, zero displacement
magic angles. In other words, the breakdown of the tBG–tTG
correspondence is nonperturbative.

While this analysis makes clear the breakdown of corre-
spondence between tBG and tTG magic angles, it does not
mean that tTG magic angles do not exist, only that they cannot
be predicted through some analytic function of the tBG magic
angles.

An approximate solution may be considered, however, if
one angle is much larger than the other. This is further divided
into two distinct cases, |η| � 1, and |η| 	 1. In the former
case, U (η(r − D)) vanishes, the system tends to an uncoupled
mono-bilayer, and the magic angle is given by the tBG magic
angle. In the latter case, the low-energy fermions are unable
to resolve the details of the rapidly oscillating U (η(r − D)),
interacting only with its zero average. As a result, one layer
effectively decouples, resulting once again in an uncoupled
mono-bilayer system. It is therefore expected that the magic
angle will tend to the tBG value, as seen in Figs. 2 and 3.
Note that the former limit is in a regime where the theory
breaks down, which can be seen in the case of tBG as the
off-diagonal moiré potential does not tend to the interlayer
hopping of Bernal stacked bilayer graphene in the untwisted
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FIG. 2. Magic angles in the chiral limit. (a) Local DOS of a graphene trilayer in the chiral limit with θ12 = θ23 = θ0 = 0.72◦ (magic angle
for zero displacement) for three different displacements D between the top and bottom layers. The inset on the top panel show the three
displacements, marked by a dot in the hexagon with the color corresponding to that of the local DOS. (b) The band structure of the sample
in (a) with D = 0 [red dot in the inset of (a)]. (c) As in (a) but for θ12 = 3θ0, θ23 = −4θ0, and θ0 = 0.4◦. Note the difference in the scales
between the plots in (a) and (c). (d) The band structure of the sample in (c) with D = 0. (e) Calculated magic-angle pairs (θ12, θ23) for twisted
trilayer graphene. The red and green colors are for magic angles with red and green displacements illustrated in inset of (a), respectively. The
magic-angle pair of (a), corresponding to Ref. [27] is marked by a blue star and that of (c) by a blue triangle. The blue square is the magic
angle in twisted trilayer graphene with mirror symmetry [19]. All previous theoretical predictions are recovered by our exact numerics. The
horizontal dash dot line indicates the bilayer magic angle θM

tBG. (f) Magic-angle triplets (θ12, θ23, θ34) for stacks of four layers. Different colors
are used for clarity.

limit, while the latter limit is more physical. We reiterate that
the results here only indicate the inability to express the tTG
magic angles solely in terms of some analytic function of the
tBG magic angles, necessitating their determination through
numerical methods.

These results are readily generalized to multilayers and
we conclude that, except at certain exceptional configurations
such as AA . . . A stacked alternating (or equal) angle multilay-
ers, there is in general no analytic relation between the values
of magic angles in multilayers and that of the bilayer.

IV. EXACTLY SOLVABLE CASE: EQUAL-TWIST
MULTILAYERS WITH N > 3

Before proceeding with numerical computation, we first
address the aforementioned exactly solvable configurations
where a correspondence between trilayer and bilayer magic
angles may be established. These may be split into two cases,
η = −1 and η = 1, both with D = 0. These may also be
referred to as the alternating and helical cases. Both cases
may be generalized to AA . . . A aligned stacks of N layers,
where each layer is twisted by the same angle, θ , and either
alternating or same direction with respect to the previous
layer.

Previous work on the alternating trilayer came concurrent
with the generalization to N layers [19], while that on the
equal sign, equal-magnitude case was initially confined to tri-
layers [27]. There the authors constructed a three-component
spinor in terms of the tBG flat band 2-spinor satisfying the

trilayer flat band equation, thereby relating the helical trilayer
graphene magic angle to the tBG magic angle. We therefore
focus here on the helical multilayer, generalizing these prior
arguments. The magic angles for N layers with equal twist
and AA . . . A stacking are determined by an N-component
spinor which is the solution of the N first-order differen-
tial equations describing the N-layer flat bands, DN�N = 0.
As previously mentioned, the bilayer solutions are known
[18], �2 = {ψ1k, ψ2k}, written here in momentum space. The
solution found in Ref. [27] describes �3 in terms of three
combinations of products of combinations of these wave func-
tions:

�3 ≡
⎡
⎣ cψ1k1ψ1k2

1√
2
(ψ1k1ψ2k2 + ψ2k1ψ1k2 )

ψ2k1ψ2k2

⎤
⎦. (10)

A similar equation can be written for the N-component spinor
solution to the N-layer flat band equation:

�N ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
∏i=N

i=1 ψ1ki

1√
N

∑ j�N
j=1 ψ2k j

∏i=N
i=1,i �= j ψ1ki

1√
N (N−1)

∑ j=N,k=N
j=1,k=1,k �= j ψ2k j ψ2kk

∏i=N
i=1,i �= j,i �=k ψ1ki

· · ·∏i=N
i=1 ψ2ki

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)
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FIG. 3. Magic surface in tTG. Top: The black line indicates
predicted magic-angle pairs (θM

12, θ
M
23 ) for D = 0. Shaded gray re-

gions denote the error in the magic-angle pair prediction. Solutions
corresponding to our numerical calculations (repeated from Fig. 2)
are marked with smaller red diamonds. Only the largest-angles,
corresponding to the two solution branches, are shown. The con-
figurations studied in Refs. [19] and [27] are indicated with a large
blue and green diamond, respectively, and are recovered by our exact
calculations. The discrepancy between the result of Ref. [27] and the
predicted line is due to accidental coherence of the typically incoher-
ent, neglected derivative term S−1(∂̄S), see text for further discussion.
Dotted lines of constant θ12/θ23 are marked as guides to the eye. Bot-
tom: Predicted range of magic-angles over all D. The shaded region
indicates pairs of-angles for which there exists some D that would
give flat bands. The configurations studied in Refs. [22,26,29,30] are
marked in yellow, green, red, and blue, respectively.

We define α2 = [vF (4π )/(2d sin θM
tBG/2)]/w. Then Eq. (11)

has a solution for:

αN ≡ 4πvF

dtAB

/[
2 sin

(
θM

N

2

)]
= α2

/[
1

(N − 1)!

] 1
N−1

,

(12)

where θM
N is the magic angle of the equal angle twisted mul-

tilayer. We have checked that this equation gives the correct
solution for α3 = √

2α2 and α4 = 3
√

6α2 agrees with our nu-
merical results for a stack of four layers. Of particular interest
is the infinite layer limit,

lim
N→∞

θM
N = e

N − 1
θM

tBG, (13)

where e is Euler’s number. This result implies that a small
shear force applied to the top and bottom layers of a graphite
stack can lead to a peak at the density of states near the Fermi

TABLE I. Magic angles in degrees for selected angle ratios.

(m, n) θ
(0)
0 θ

(1)
0 θ

(2)
0 θ

(3)
0

(3,4) 0.455 0.420 0.400 0.345
(4,7) 0.314 0.307 0.302 0.298
(4,−7) 0.299 0.289 0.284 0.273

level. The results of this section, combined with previous
work [19,27], exhaustively detail the configurations for which
exact analytical solutions for trilayer magic angles exist in
terms of the bilayer solution. The previous section makes clear
that further, comprehensive study of the trilayer configuration
space will have to involve numerical computation. As a final
note, no claims are made regarding a comprehensive search
of exact algebraic solutions in N > 3 multilayers, and it is
possible that special, analytical solutions may be constructed
when twist angles are of equal magnitude but the signs of the
angles have no particular structure.

V. FLAT BANDS IN THE CHIRAL LIMIT

Having addressed analytically solvable cases, we now
analyze Eq. (5) numerically to investigate the existence of
flat bands in chiral model trilayers [17,18] for different
combinations of twist angles, θ12, θ23 and relative displace-
ments between the top and bottom layers. The chiral limit
for graphene trilayers with the same twist angle between
nearest layers, θ12 = θ23 has been recently explored in
Refs. [27,45,47]. The parameters that we use in the following
are γ0 = 2.6 eV (intralayer nearest-neighbor hopping) and
tAB = 0.0975 eV (interlayer hopping) [48]. The choice of γ0

leads to a Fermi velocity vF ≈ 840 km/s.
The analytical arguments for the existence of infinitely flat

central bands in twisted bilayer graphene [18] is based on
the existence of zeros at the corners of the unit cell of a
two-component spinor which describes the periodic part of
the wave function at the K point of the Brillouin zone. As
one of the two components, by symmetry, vanishes at the
relevant points, the problem reduces to the tuning of the zeros
of a single component. The argument can be generalized to
a trilayer, where a three-component spinor is involved. When
the Hamiltonian has C3 symmetry [18] two of the three com-
ponents of the spinor vanish at the relevant point in the real
space unit cell, so that the existence of infinitely flat bands
reduces to the existence of a zero in a single component of
the spinor. The C3 symmetry exists at least for a displacement
D = 0 and for the displacements which take the trilayer from
the AAA to the ABA configuration. An alternative analysis, for
the case of a trilayer with θ12 = θ23, can be found in Ref. [27].
We numerically find flat bands, whose width is continuously
lowered as the angle is determined with better precision, at
several magic angles for all combinations of integers, m, n
and displacements, D, tried. Results are shown in Fig. 2 with
selected results in Table I. Interestingly, in some cases we find
a quadruplet of bands nearly degenerate at zero energy.

We show in Fig. 2 the local DOS and band structures at the
magic angles corresponding to {m, n} = {1, 1} and {m, n} =
{3,−4} obtained for a displacement between top and bottom
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FIG. 4. Local DOS in the chiral limit for the sample in Ref. [30]
with angles θ12 = 3θ0, θ23 = −4θ0, and θ0 = 0.47◦ and different
displacements between the top and bottom layers. The displacements
are described by the phases {0, 0, 0} (a), {0, −π/18, π/18} (b), and
{π/36, −π/18, π/36} (c). (d) An average of the three densities of
states with the weights {1 : 2 : 3}, is shown in (d).

layers D = 0. For each magic angle, we plot the DOS for
the selected displacement, D = 0, and for two other displace-
ments, shown in the inset in Fig. 2(a). There is a significant
dependence of the local DOS on D in the {1, 1} case and a
less pronounced dependence in the {3,−4} case. This trend
towards a weaker dependence on D with increasing values of
the integers {m, n} is observed for all combinations explored,
see Fig. 4. As expected, for |θ23| large, θM

12 → θM
tBG as the large

twist effectively decouples one layer from the other two.
While an analytical correspondence between the magic an-

gle for a generic tTG configuration and θM
tBG does not exist, the

3 × 3 matrix equation which describes the spinor at the magic
angles of the chiral bilayer [18,27] can be approximately
reduced to an effective bilayer, making significantly easier the
calculation of magic angles as a function of commensuration
and displacement, as we show in the next section. We note
here for completeness that the lack of points between lines of
slope −1 and 1 in Fig. 2(e) is a conventional choice, as both
lines correspond to symmetry operations on the trilayer stack
and respectively mirror inversion about a plane parallel to the
layers and rotation by π about any axis parallel to the layers.

The magic angles where flat bands appear depend on the
integers m, n, and on the displacement D. To a first approx-
imation, we can approximate the electronic density of states
of the system by an average over the values of D. This
approximation can be expected to become exact in the limit
�m2/�m ∼ 1/θ0 → ∞ and also when the dependence of the
band structure on D is small.

The flat bands at the magic angles reported here show a
greater degree of plasmon screening compared to tBG and
thus a greater resilience against distortion from interaction ef-
fects, see Appendix F. They also have a finite Berry curvature
and, typically, nonzero Chern numbers, see Appendix G.

Our analysis can be extended to multilayers with any num-
ber of layers greater than three. Results for the density of
states in the chiral limit of an helical stack of four layers
(θ12 = θ23 = θ34 = θ0) at different magic angles are shown in
Fig. 5, showing clearly the expected peak at zero energy.

VI. FINDING THE MAGIC SURFACE IN TRILAYER
CONFIGURATION SPACE

Our numerical calculations have shown that a magic-angle
pair may be found seemingly for any numerically accessible
(commensurate) twist-angle ratio, and so the natural question
would be whether this may be extended to the continuum in
angle-pair space. First, we write Eq. (6) more compactly,

D3(r, D, α, η) = 13∂̄ + αU (r, D, η), (14)

where U is trilayer moiré potential and, without loss of gener-
ality, η � 1 is the angle ratio generalizing the commensurate
ratio m

n to incommensurate angle pairs.
Previous work [19] found that in the case of alternating,

equal-magnitude angles at AAA stacking, η = −1, D = 0,
there exists a similarity transformation of D3 that converts
it to the form of monolayer-twisted bilayer problem, with
an effective moiré potential. The same may be attempted in
the more general case of Eq. (14), that is we wish to find a
similarity transformation matrix S such that

S−1D3S = 13∂̄ + V, (15)

where V is the effective bilayer moiré potential. This is easily
rearranged into the defining equation

∂̄S + αUS − SV = 0. (16)

Naively, this appears to be at odds with our previous con-
clusions that tTG does not, in general, have flat bands in
correspondence with those of tBG. However, the two nonzero
components of V are generally not simple multiples or scal-
ings of U , and so the flat band solutions, if they exist, remain
independent from the tBG solutions.

The definition for the transformation S given by Eq. (16)
is not useful in practice as, for a bilayer moiré potential V ,
one column of S is given by the flat band 3-spinor solution of
the original flat band equation, D3� = 0. Solving for S thus
involves solving for the flat band solutions in the first place,
defeating the purpose of transforming the moiré potential to
bilayer form to extract the magic angles. Instead, we consider
an approximate approach by initially neglecting the deriva-
tive term and comparing the continuous curve so obtained
with the exact calculations at discrete commensurate angle
pairs. It is already known that in the alternating angle case,
S is a constant in space and so the derivative term S−1(∂̄S)
is identically zero [19]; analysis of the match between the
approximate continuous results for general angles and exact
discrete results for commensurate angles will tell us whether
the initial simplifying assumption is valid.

Neglecting the derivative term amounts to a transformation
of the off-diagonal elements of the layer space submatrix,
which have the form

Doff =
⎛
⎝0 a 0

b 0 c
0 d 0

⎞
⎠

L

, {a, b, c, d} ∈ C. (17)
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FIG. 5. DOS for magic angles in the chiral limit of four layer stacks with θ12 = θ23 = θ34 = θ0 (helical arrangement). (a) AAAA stacking,
θ0 = 0.55◦. (b) AABB stacking, θ0 = 0.395◦. (c) ABAB stacking, θ0 = 0.299◦.

These may be collected into a single pair of off-diagonal
elements through the similarity transformation

S−1DoffS =

⎛
⎜⎜⎝

0 0 0

0 0 b
√

1 + cd
ab

0 a
√

1 + cd
ab 0

⎞
⎟⎟⎠

L′

, (18)

S = 1√
2

⎛
⎜⎝

− c
b 0 a

d

0 a
d

√
1 + cd

ab 0
1 0 1

⎞
⎟⎠, (19)

where the subscript L′ reminds us of the nontrivial mixing
of the layers. We are thus able to re-express the interfering
double-moiré problem into a single effective moiré potential.
We note that the transformation S is not unitary in general and
so does not conserve the inner products of spinors but does
conserve the band structure. We further note that there is some
freedom to choose the form of the single off-diagonal element;
our choice most easily connects to previous work [19] where
in the case of alternating twist angles, U12(r) = U23(−r) and

so S is unitary and the form factor
√

1 + cd
ab = √

2, resulting
in a constant scaling of the bilayer moiré potential and thus of
the magic angle.

Applying the transformation of Eq. (18) then allows us to
obtain a single effective moiré potential, from which an esti-
mate of the magic angle pair may be made by comparison with
the bilayer moiré potential, a nontrivial extension of previous
work [19] which focused on the special case of alternating
twist-angle multilayers.

Our estimate for the magic angle and the error of our
estimate is calculated from the average and standard deviation

of the form factor
√

1 + cd
ab over space. While the form of the

effective moiré potential we have chosen does indeed have
singularities, e.g., at the origin, these diverge as 1

x+iy and so
the integral over the plane converges, which is unsurprising
as it is possible to choose a form of effective moiré potential
with no singularities at all, though in that case the analogy to
tBG is weaker.

Results for zero shift, D = 0, are shown in the upper panel
of Fig. 3 where we indicate with a black line the predicted
magic-angle pairs according to the average-value analysis de-

scribed above, with the uncertainty in the prediction shown by
the shaded gray region. The alternating twist case previously
studied [19] is marked with a blue diamond, and we repeat
that this is the only point where the analysis is exact. We mark
also our relevant numerically calculated magic-angle pairs,
repeated from Fig. 2, with red diamonds, and note the excel-
lent agreement with the more general analysis, verifying that
the simplifying assumption taken is valid and giving us con-
fidence that the results are reliable even for the numerically
inaccessible case of incommensurate angles. A notable excep-
tion is the equal-magnitude helical twist case [27], marked
in green, which is especially far from the predicted point.
Analysis of the derivative term S−1∂̄S reveals that the nonzero
components are generally incoherent among themselves and
with the components of U , leading to a vanishing effect on
the effective moiré potential V and good agreement with
the exact approach. However, when θ12 = θ23 and D = 0 all
components of S−1∂̄S become scalar multiples of the same
periodic function, strongly affecting the eigenfunctions of V
and resulting in the visible discrepancy between approaches at
this specific angle ratio. Our exact calculations, detailed in the
previous section and corresponding to solutions of Eq. (16),
recover both the alternating and helical predictions [19,27],
indicated by the red diamonds overlapping the blue and green
diamonds.

Our analysis predicts two branches of magic-angle pairs
from which an infinite set descends, as in the bilayer case
[18]. At most two sets of numerically calculated magic an-
gles per angle ratio are shown to connect with the two
branches, though other values have been found. We note that
the approximate analysis recovers the expected results of the
aforementioned limits for (1) one angle vanishing and (2) one
angle very large, where in both cases flat bands are expected
when the other angle is close to the tBG magic angle.

We repeat the calculation over all moiré shifts to ob-
tain a range of magic-angle pairs, shown in the lower
panel of Fig. 3. The magic angles vary continuously with
shift and so the manifold of magic configurations is a
three-dimensional surface within the four-dimensional trilayer
configuration space of two angles and a two-dimensional
relative shift. This surface divides the configuration space
into unconnected sectors, as seen in the lower panel of
Fig. 3 where it is not possible to move from θ12 = θ23 = 0
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to θ12 = θ23 = 2◦ without passing through the magic sur-
face. We remind the reader here that the plot is symmetric
about the origin. This may have consequences on the topol-
ogy of the bands as a function of trilayer configuration,
as magic configurations may arise as the “midpoints” of
band crossings, with the flat bands flattened by repulsion
of the crossing bands. Previous work on alternating-twist
magic-angle trilayer graphene [22], with trilayer configuration
(θ12 = 1.57◦, θ23 = −1.57◦, D = 0), a twisted monolayer–
AA-bilayer system [29], configuration (θ12 = 1.22◦, θ23 = 0,

D = 0), and a moiré quasiperiodic crystal [30], with con-
figuration (θ12 = 1.41◦, θ23 = −1.88◦, D unknown), may be
placed as single points within this extended magic phase.

Our method predicts similar magic surfaces corresponding
to each of the higher-order (smaller-magnitude) magic angles
of tBG. Each branch of the surface begets an infinite series
of magic angles, maintaining the proportion set by the set of
magic angles for tBG. These corroborate previous findings in
the alternating and helical cases [19,27]. However, the error
in the angles predicted by our method is absolute rather than
relative, and constant for all orders of magic angle. There is
therefore much less precision for these higher-order, lower-
magnitude magic surfaces.

The method may be extended to systems of N layers by de-
composing into either N/2 uncoupled bilayers, for N even, or
(N − 1)/2 uncoupled bilayers with one uncoupled monolayer,
for N odd. This produces �N/2� form factors, with �. . . � the
floor function, that may each generate two branches of solu-
tions, from which an infinite set of magic angles may descend,
except at symmetric points where the branches coincide.

Finally, we briefly discuss failure conditions. The method
would be considered to have failed if it had generated re-
sults generally incompatible with our exact calculations, if
the form factor had such severe fluctuations that the standard
deviation was of the order or larger than the mean value,
or if the predicted angle pairs were well beyond the validity
of the small-angle approximation sin θ ≈ θ . Figure 3 clearly
indicates that, in general, this has not happened, giving us
confidence in the existence of an extended magic surface.

VII. ANALYSIS OF THE TRILAYER STUDIED IN REF. [30]

We now analyze the experimental situation reported in
Ref. [30]. The trilayer studied there shows angles θ12 ≈
1.42◦, θ23 ≈ −1.88◦, which are well approximated by θ12 =
3θ0 and θ23 = −4θ0 with θ0 ≈ 0.47◦. Results for local and av-
erage densities of states in the chiral limit are shown in Fig. 4
(we use {tAA, tAB} = {0.0797, 0.0975} eV, and γ0 = 3.06 eV,
which implies vF ≈ 987 Km/s, in order to compare with
Ref. [30]). As shown in the figure, the dependence of the
density of states on the displacement D is very weak, which
suggests that the weighted average shown in Fig. 4(d) gives a
good approximation to the exact value.

Figure 6(a) is the tight-binding (TB) density of states for
trilayer with θ12 ≈ 1.42◦, θ23 ≈ −1.88◦. We use γ0 = 3.1 eV
and γ1 = 0.43 eV [49–51], the same as Ref. [30] (details in
the TB method in Appendix D). The discrepancy between
the TB and chiral limit results is due to the difference of the
Fermi velocity. Moreover, if we reduce the Fermi velocity,
then a flat band appears in the charge neutrality point (not

FIG. 6. The tight-binding results of the sample in Ref. [30].
(a) The density of states for a trilayer with angles θ12 = 1.41◦,
θ23 = −1.88◦. The gray line is the result in the chiral limit. (b) Tight-
binding calculation of the inverse of total DOS versus the carrier
density n and electric field potential . Vanishing of the peaks with 

is due to depletion of carriers from terminal layers, and thus effective
removal of one moiré potential. Our results match quantitatively with
Ref. [30]. (c) The local density of states at energy of 7 meV in
the real space for trilayer in (a), with a zoom in of the states with
displacements D marked by dashed square with colors. Red and gray
correspond to the color in Fig. 2(a), and blue are in the middle region.

shown here). The electric field effect is shown in Fig. 6(b).
Due to the mirror asymmetry, the system shows a strongly
asymmetric response with respect to positive and negative
electric field. By applying a perpendicular electric field along
the z axis, corresponding to a positive electric potential ,
we deplete layer 3 and tune carrier density n to recover the
resistive state, corresponding to a peak in the inverse of the
DOS, for the moiré pattern with θ12. This peak is located at
n = 4.7 × 1012 cm2. Inversely, a negative  decouples layer
1 and recover a resistance state of θ23. Moreover, the states
of the peak at 7 meV in Fig. 6(a) is highly localized with an
independence of the displacement D, shown in Fig. 6(c), in
agreement with the results in Fig. 4 in the chiral limit.

We extend our discussion to another configuration, the heli-
cal trilayer graphene with θ12 = θ23 = θ0. One magic angle is
θ0 = 2◦ [26], which has a peak located at the charge neutrality
point of the DOS, shown in Fig. 14. If we consider the lattice
relaxation [52–54], then the magic angle reduces to 1.57◦. For
AAA helical trilayer graphene with identical twist angles, the
moiré-of-moiré structure locally relaxes into large areas that
contains only one moiré pattern. That is, a large region of the
periodic ABA could be reconstructed if a strong intralayer and
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interlayer potential is utilized. The states of the flat band in
the relaxed system is highly dependent on the displacement D,
which is consistent with the results in Fig. 2(a). Furthermore,
the helical trilayer graphene with θ12 = θ23 could be an ideal
platform for realization of the chiral limit due to significant
corrugation, or via heterostrain engineering [45].

VIII. CONCLUSIONS

We have considered the existence of flat bands in twisted
stacks of graphene layers where the twist angles do not
allow for the definition of a simple moiré structure, gen-
eralizing previous works [19,27,41,42,44–47] which have
focused on special configurations yielding exact or approxi-
mate moiré structures in trilayers. Analysis of the flat band
equations shows that, except at these special configurations,
magic tTG solutions cannot be expressed in terms of those
of tBG, necessitating numerical computation. By analyzing
the chiral limit [17,18] we conclusively demonstrate that flat
bands appear in all twist angle ratios where the angles are
close to multiples of coprime integers.

Our further extension to generic, incommensurate angles
connects the previously disparate magic points of specific
trilayer configurations into an extended magic line which, in
general, is unrelated to θM

tBG. Building on the local approxi-
mation of Ref. [44] for the specific case of helical trilayers
with nearly equal twist angles, we accurately describe the
electronic structure of generic twisted multilayers even away
from the magic angle, with our results consistent with both
large-scale tight-binding calculations [26] and contemporary
experiments [30]. The analysis presented here opens the way
to the study of topological features in many types of twisted
multilayers, and they suggest that the rich phase diagram
found in twisted bilayer graphene may exist in many other
graphene stacks.

Note added. We have noticed Ref. [55], posted a day before
our paper. This reference discusses topics related to our work.
Regarding the two-paper overlap, the results are in agreement.
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APPENDIX A: DEFINITION OF PERIODICITIES

For completeness, we specify the two relevant periodicities
in a twisted graphene trilayer with almost commensurate twist
angles, θ12 and θ23 following the steps described in Ref. [44].
We write the two angles as:

θ12 = mθ0 + mδθ θ23 = nθ0 − nδθ, (A1)

where m, n are coprime integers, and we assume that θ0 � 1
and δθ � θ0. The angles θ12 and θ23 define moiré structures.
The vectors connecting the points K and K′ of the respective
Brillouin zones are as follows:

K12 ≈ 4π

3d

{
−m2

(
θ2

0 + 2θ0δθ
)

2
, mθ0 + mδθ

}

≈ mg0 + mδg

K23 ≈ 4π

3d

{
−n2

(
θ2

0 − 2θ0δθ
)

2
, nθ0 − nθ0

}

≈ ng0 − nδg, (A2)

where we have assumed that θ0 � 1. We obtain:

g0 ≈ 4π

3d

{
m + n

4
θ2

0 − m − n

2
θ0δθ, θ0

}
≈ 4π

3d
{0, θ0}

δg ≈ 4π

3d

{
−m − n

4
θ2

0 − m + n

2
θ0δθ, δθ

}
. (A3)

Vectors g0 and δg and three equivalent vectors rotated by
±120◦ define the relevant periodicities of the trilayer. The two
vectors satisfy |δg| � |g0|, so that, in real space, the period-
icity associated with δg changes much more slowly than that
asociated to g0. Locally, g0 defines a moiré lattice with unit
vector �m ≈ d/θ0, where d is the lattice constant of graphene.

In the following, for simplicity, we assume that δθ � θ2
0 ,

although this assumption is not crucial. Then δg defines a
new periodicity, with unit cell rotated 90◦ with respect to
the unit cell defined by g0 and a lattice unit of length �m2 ≈
(4d )/(|m − n|θ2

0 ) 	 �m. Note, finally, that our definition of
δg, for m �= 1 or n �= 1, differs from the one used in Ref. [44],
although both definitions scale as |δg| ∝ θ2

0 .
The analysis described above can be extended to an ar-

bitrary number, N , of layers, and N1 twist angles between
nearest layers, provided that these angles are almost commen-
surate, defined by N − 1 coprime integers. Such a calculation
leads to a periodicity, g0, defined by an angle θ0, and N − 2
additional periodicities defined by vectors δgi=1,··· ,N−2 such
that |δgi| � |g0|. Insofar as the role of δg can be reduced to
an overall displacement between the layers (see below) the
two definitions should give the same results.

APPENDIX B: SLOW PERIODICITY AS A
DISPLACEMENT BETWEEN LAYERS

We now elaborate on the argument that the slow periodic-
ity, δg, identified in the previous section can be interpreted as
a local displacement of the top layer with respect to the bottom
layer [44].

013165-9



D. C. W. FOO et al. PHYSICAL REVIEW RESEARCH 6, 013165 (2024)

FIG. 7. Sketch of the momenta of the Bloch waves included in
the continuum model, see Eq. (B1), for m = 2, n = 1. The magenta
arrows represent the vectors mgi, and the orange arrows represent the
vectors ngi, see Eq. (B3).

The interlayer tunneling part of the continuum Hamiltonian
[1,2], in real space, is

HT = H12
T + H23

T

H12
T =

∑
j=1,2,3

Tje
img j ·r

H23
T =

∑
j=1,2,3

Tje
ing j ·r, (B1)

where Tj define inter-sub-lattice 2 × 2 matrices:

Tj ≡
⎡
⎣ tAA tABei 2π ( j−1)

3

tABe−i 2π ( j−1)
3 tAA

⎤
⎦, (B2)

and

g1 = �m√
3
{0, 1}

g2 = �m√
3

{√
3

2
,−1

2

}

g3 = �m√
3

{
−

√
3

2
,−1

2

}
. (B3)

The momenta of the Bloch waves used in the calculation
are shown in Fig. 7.

We can generalize the tunneling Hamiltonian to the case
where the moiré pattern of layers 1 and 2 is displaced by a shift
D1 and the moiré pattern between layers 2 and 3 is displaced
by a shift D3 [40]. In the initial Hamiltonian, the rotation is
around a point with AA stacking between layers 1 and 2 and
AA stacking between layers 2 and 3, that is, AAA stacking. The

shifts lead to the Hamiltonian:

HT = H12
T + H23

T

H12
T =

∑
j=1,2,3

Tje
img j ·(r−D1 )

H23
T =

∑
j=1,2,3

Tje
ing j ·(r−D3 ). (B4)

Each Bloch wave in the calculation, see Fig. 7, can be mod-
ified by a gauge factor, eiG·D′

, where G is the momentum of
the wave. This gauge transformation induces a phase in the
interlayer tunnelings, which is equivalent to a redefinition of
the shifts:

D′
1 = D1 − D′

D′
3 = D3 − D′. (B5)

This result is independent of the integers m and n and of the
angle θ0. An equal shift, D1 = D3, of the two moiré patterns
can be gauged away. This implies that the calculated elec-
tronic structure is only dependent on the value of D1 − D3 =
D.

The two periodicities defined by g0 and δg in the previous
section modify the continuum Hamiltonian, Eq. (B1), leading
to:

H12
T =

∑
j=1,2,3

Tje
img0 j ·reimδg j ·r

H23
T =

∑
j=1,2,3

Tje
ing0 j ·re−inδg j ·r. (B6)

The vectors δg j define a periodicity with unit vectors in real
space:

{D1, D3} = 2π

3d|δgi| {R1, R2} ≈ 1

θ2
0

{R1, R2}, (B7)

where R1 and R2 are the lattice vectors of an untwisted
graphene layer.

We now assume that the arguments δg j · r vary slowly with
respect the functions g0 jr and assume that the value of r = D
in δg j · r is constant. Then, using Eq. (B4), we obtain that the
local Hamiltonian is equivalent to displacements of the top
and bottom layers by ±(d/�m2)Rπ/2(D), where Rθ is a rotation
operator.

For m �= 1 or n �= 1 the loops in momentum space which
connect a momentum in the central layer to itself through a
path which visits both the top and bottom layers require at
least m × n steps. The increased periodicity of these loops for
m �= 1 or n �= 1 imply that the band structure in real space
repeats itself for a displacement periodicity defined by the unit
vectors:

{D̃1, D̃3} = 1
mn {D1, D3}. (B8)

This result implies that the actual periodicity in real space is
given by �m2/(mn). A sketch of the different regions in the
unit cell, and the points where the band structure repeats itself
is shown in Fig. 8.

DOS for two choices of the magic angle in the chiral limit,
and {m, n} = {2, 1} are shown in Fig. 9. Similar results for
{m, n} = {3, 2} are shown in Fig. 10.
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FIG. 8. Sketch of the real space unit cell structure for (a) tri-
layer with {m, n} = {1, 2} and (c) trilayer with {m, n} = {3, −4}.
The black hexagon defines the large unit cell, associated with moiré
length �m2. The red hexagons show the moiré structure associated
with angle θ0 and moiré length �m. Blue and green hexagons show
moirés associated with angles θ12 and θ23. Note that the moiré lattices
associated to θ0 and θ12 coincide. Special points in the momentum
space unit cell with the AAA electronic structure for (b) {m, n} =
{1, 2} and (d) {m, n} = {3, −4} cases.

APPENDIX C: VALIDITY OF THE LOCAL
HAMILTONIAN EXPANSION

The moiré-of-moiré length scale emerges due to the mis-
alignment of the moiré patterns between layers 1 and 2, and
layers 2 and 3, (θ12 + θ23)/2, as shown in the Fig. 1(c) of the
main text. Starting from a particular momentum point in the
second layer, we may reach other points in the second layer
by hopping through either the first or third layer. Hoppings
between only two of the layers allow us to define a momen-
tum space moiré lattice, a subset of which are shown as red
points along the black lines. The dotted line marks the closest
approach between middle layer states connected by hoppings
that only pass through either the first or third layer, which de-
fines the moiré-of-moiré modulation length scale. The sketch
specifically shows the situation for m, n = 3, 4, θ0 = 1◦.

The distance between a momentum state reached by a hops
through the first layer and another state reached by b hops
through the third layer is

√
3kDPab, where

P2
ab = (aθ12)2 + (bθ23)2 − 2ab|θ12θ23| cos

(
θ12 + θ23

2

)

≈ (a|θ12| − b|θ23|)2 + ab|θ12θ23|
(

θ12 + θ23

2

)2

→ (am − b|n|)2θ2
0 + abm|n|

(
m + n

2

)2

θ4
0 , (C1)

and we take the small-angle approximation in the sec-
ond line and commensurate angles (m � 0 WLOG) in the
third line. The moiré-of-moiré length scale is then lm2 =
2π/

√
3kDmin(Pab), where we minimize Pab over all integers

a � 0 and b � 0, except for the trivial solution P00 = 0. For
small commensurate angles with m and n small, this generally
occurs at P|n|m = |mn(m+n)|

2 θ2
0 ; however, if m and n are large

and of the same sign, then Pab may be minimized at some other
a �= |n|, b �= m. For example, at θ12 = 1.0◦, θ23 = 0.9◦, P1,1 <

P9,10. For completeness, we note that this description only
considers lattice points lying on the two lines as shown in the
sketch, when in fact there are others in the two-dimensional
plane. Provided the angles and thus the misalignment is
small, the points on these lines remain the closest to each
other.

Numerically calculated results for lm2 are shown in the
Fig. 1(d) of the main text. As expected, lm2 diverges along the
line θ12 = −θ23, and is generally larger for θ23/θ12 negative
than for θ23/θ12 positive due to the reduced misalignment
of the moiré patterns. lm2 is also particularly pronounced at
commensurate angles with simple ratios, where it is easy to
minimize the first term of Eq. (C1) without the second term
getting too large. For experimental samples smaller than lm2,
a particular local Hamiltonian expansion is expected to be a
good description of the bands while for samples much larger
than lm2, it is necessary to average over expansion centers
or, equivalently, over D1 − D3. We note that the form for
lm2 derived and calculated here agrees with that previously
derived [44] for the special case of θ23/θ12 ≈ 1.

Neglecting the slow periodicity in the local expan-
sion, as is done in the numerical calculations of us and
Ref. [44], neglects the misalignment and so forces the black
lines of the upper panel sketch to coincide. In the case
of commensurate angles, this leads to min(Pab) = 0 and
thus lm2 diverging, leading us to ignore the modulation
of D1 − D3.

APPENDIX D: TIGHT-BINDING RESULTS

We use a round disk method to construct the twisted
graphene trilayers with arbitrary twist angles. The two inde-
pendent twist angles θ12 and θ23 are chosen to be the rotation
of the second layer relative to the first layer and the rotation
of the third layer relative to the second layer, respectively.
The rotation origin is chosen at an atom site. We use a twist
angel pair (θ12, θ23) as the notation for different twist-angle
configurations. Positive (negative) values of the twist angle
denotes counterclockwise (clockwise) rotations. The sample
with (−θ , θ ) has a mirror symmetry with the middle layer as
the mirror plane. To calculate the property of these large-scale
systems with arbitrary twist angles, we construct the system
in a large round disk. The radius of the disk should be set
sufficiently large to rid the effects of edge states [50]. In the
actual calculation, the disk with radius of 172.2 nm (700d be-
ing d the lattice constant of graphene) and contains 10 million
carbon atoms are utilized for the twist angles investigated in
this work. Figure 11 shows the (21.8◦, 21.8◦) configuration of
twisted trilayer graphene with AAA stacking.

A parameterized full TB model is used. In the tight-binding
model, only pz orbitals are taken into account, we construct
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FIG. 9. Results for the magic angles in the chiral limit and θ12 = 2θ0, θ23 = θ0. [(a)–(d)] The local DOS for a magic angle θ0 = 1.163◦

with three displacements and their average, as in Fig. 4 of the main text. [(e)–(h)] As in the top panel but for a magic angle θ0 = 1.14◦.

the Hamiltonian of the twisted graphene trilayers as

H =
∑

i

εi|i〉〈i| +
∑
〈i, j〉

ti j |i〉〈 j|, (D1)

where |i〉 is the pz orbital located at ri, and 〈i, j〉 is the sum
over index i and j with i �= j, and εi is the onsite potential
term. According to the Slater-Koster formalism, the hopping
integral ti j , interaction between two pz orbitals located at ri

and r j has the form [51]

ti j = n2Vppσ (ri j ) + (1 − n2)Vppπ (ri j ), (D2)

where ri j = |r j − ri| is the distance between i and j sites, with
n as the direction cosine along the direction ez perpendicular
to the graphene layer. The Slater and Koster parameters Vppπ

FIG. 10. As in Fig. 9 but for θ12 = 3θ0, θ23 = 2θ0. [(a)–(d)] The local DOS for a magic angle θ0 = 0.6◦ with three displacements and their
average as in Fig. 5 of the main text. [(e)–(h)] Results for a magic angle θ0 = 0.59◦.
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FIG. 11. Schematic of the AAA trilayer graphene with θ12 =
θ23 = θ0 = 21.8◦. The θ12 and θ23 are the twist angles between layer 1
and layer 2 and then layer 2 and layer 3, respectively. The orange and
purple rhombi are the moiré unit cells with θ12 and θ23, respectively,
which has length �m = 0.65 nm. The black rhombus is the unit cell
of the moiré-of-moiré with �m2 = 1.7 nm. The green square shows
an ABA stacking region.

and Vppσ follow

Vppπ (ri j ) = −t0eqπ (1−ri j/a)Fc(ri j ),

Vppσ (ri j ) = t1eqσ (1−ri j/h)Fc(ri j ), (D3)

where a = 1.42 Å and h = 3.349 Å are the nearest in-plane
and out-of-plane carbon-carbon distance, respectively, t0 =
3.1 eV and t1 = 0.43 eV are the TB hopping parameters
taken from the moiré quasiperiodic crystal paper [30]. The
parameters qσ and qπ satisfy qσ

h = qπ

a = 2.218 Å−1, and the
smooth function is Fc(r) = (1 + e(r−rc )/lc )−1, in which lc and
rc are chosen as 0.265 and 5.0 Å, respectively. In the twisted
graphene trilayer calculations, we only consider the interlayer
hoppings between adjacent layers. An open boundary con-
dition is used in the disk model. The electronic properties
of the twisted graphene trilayer with arbitry angles (θ12, θ23)
are calculated by the tight-binding propagation method im-
plemented in the TBPLaS simulator [49]. For example, the
detailed formula of the density of states is

D(ε) = 1

2πS

S∑
p=1

∫ ∞

−∞
eiεt 〈ϕp(0)|e−iHt |ϕp(0)〉dt, (D4)

where |ϕp(0)〉 is one initial state which is the random superpo-
sition of all basis states and S is the number of random initial
states. The distribution of states in real space can be obtained
by calculating the quasieigenstates [49] (a superposition of
degenerate eigenstates with certain energy). The quasieigen-
states has the expression:

|�(ε)〉 = 1√∑
n |An|2δ(ε − En)

∑
n

Anδ(ε − En)|n〉, (D5)

FIG. 12. The TB DOS of AAB trilayer graphene with twist an-
gles θ12 = θ23 = θ0. The hopping parameters are t0 = 2.8 eV and
t1 = 0.44 eV. The displacement D is zero.

where An are random complex numbers with
∑

n |An|2 = 1,
En is the eigenvalue, and |n〉 is the corresponding eigen-
state. The local density of states mapping calculated from the
quasieigenstates is highly consistent with the experimentally
scanning tunneling microscopy dI/dV mapping. We also con-
sider the lattice relaxation effect on the electronic properties
of twisted trilayer graphene. In the round disk sample, the
edge carbon atoms possessing dangling bond are passivated
by placing in-plane hydrogen atoms to saturate the dangling
σ edge bonds. The carbon-hydrogen bond length is assumed
to be 0.1 nm. We employ the classical molecular dynamics
simulation package LAMMPS to do the full (both in-plane
and out-of-plane) lattice relaxation [52]. The intralayer C-
C and C-H interactions and interlayer C-C interactions are
simulated with REBO [53] and kolmogorov/crespi/z version
of Kolmogorov-Crespi (KC) [54] potentials, respectively. To
take into account the effect of the electric field, we shift the
electric potential of the outer layers by ±. That is, without
electric field, the onsite term εi in Eq. (D1) is zero for the three
layers. Once a perpendicular electric field is applied, as shown
in the inset of Fig. 6(b), the − and  terms are added to the
εi of layer 1 and layer 3, respectively.

We focus on the helical twisted trilayer graphene configu-
ration. First, we consider the particular case that the two twist
angles are equal. In the TB calculation, we set t0 = 2.8 eV and
t1 = 0.44 eV, which give a magic angle of 1.05◦ in the tBG
case. The evolution of the density of states with twist angles
of AAB twisted trilayer graphene is shown in Fig. 12. Note
the discontinuity of the van Hove singularity (VHS) evolves
with the twist angle is due to the low resolution of the twist
angle, which will not change our conclusion. The system can
be considered as a AAA trilayer with a displacement of the
carbon-carbon distance a between the top and bottom layers.
The tendency is similar to the AAA trilayer graphene case
[26,43]. That is, with θ0 decreases, the van Hove singular-
ity gap (the energy difference between the first van Hove
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FIG. 13. The TB DOS of AAB trilayer graphene with θ0 where
twist angles θ12 = θ0, θ23 = 2θ0. The hopping parameters are t0 =
2.8 eV and t1 = 0.44 eV. The displacement D is zero. Curves are
vertically shifted for clarity.

singularity on the valence and conduction bands) narrows and
reaches minimum value at around 2◦. This result is reasonable
since the moiré unit cell with periodicity �m2 contains all the
configurations, for instance, the AAA and ABA stackings. In
this case, the first “magic angle” is 2◦. The VHSs merge
again at the angle θ0 = 1◦. In the magic angle of trilayer in
chiral limit in Fig. 5 of the main text, there is a magic angle
at θ0 = 0.72◦. In the case of θ12 = θ0, θ23 = 2θ0, shown in
Fig. 13, the first magic angle is θ0 = 1.25◦, which is consistent
with the result in the continuum limit in Ref. [43].

As discussed in the Ref. [26], in the case of AAA twisted tri-
layer graphene with θ12 = θ23, the first magic angle decreases
from 2◦ to 1.57◦ when the lattice relaxation is considered. A
sharp peak is located at the charge neutrality point, shown in
Fig. 14. The states of the peak in the real space are different
for different displacement D are different, which is in agree-
ment with the result in Fig. 2(a) of the main text. Such state
feature can be detected by the scanning tunneling microscopy
in experiment. However, for the relaxation of the system with
the REBO and KC potentials, we could not find a strong
reconstruction of the structure with the ABA region relax to
large area and clear domain wall region, which may achieve
via a stronger intralyer and interlayer potential [45].

We extend our discussion to another configuration, the
trilayer graphene with θ12 = 1.42◦ and θ23 = −1.88◦, which
was realized recently [30]. The electric field effect is shown in
Fig. 15. Due to the unequal twist angles θ12 and θ23, the system
shows strong asymmetry with respect to the electric field.
By applying a perpendicular electric field with the direction
point to the z axis, that is, the positive electric potential ,
we deplete the layer 3 and tune carrier density n to recover
the resistive state (corresponds to a peak in the inverse of the
DOS) for the moiré pattern with θ12. Such peak is located
at n = 4.7 × 1012 cm2. The results in Fig. 15 is highly con-
sistent with the results in Ref. [30]. In the next section, we
discuss further results pertinent to this experimentally realized

FIG. 14. The lattice relaxation effect of the helical structure.
(a) The TB DOS of AAA rigid trilayer graphene with magic twist
pair θ12 = θ23 = θ0 = 2◦. (b) The TB DOS of AAA with magic angle
θ0 = 1.57◦. (c) The local DOS at zero energy in real space with a
zoom-in of the states at different displacement D of sample in (b).
The colors of the squares correspond to the ones in Fig. 2(a). The
hopping parameters are t0 = 3.2 eV and t1 = 0.48 eV.

FIG. 15. The electric field effect. The inverse of the DOS of
AAA trilayer graphene with magic twist pair θ12 = 1.42◦ and θ23 =
−1.88◦ without electric potential (top panel) and under a positive
electric potential (bottom panel). The solid black line shows our theo-
retical tight binding calculation, while the dashed blue line shows the
calculation from Ref. [30]. The solid red line shows the resistance as
measured in Ref. [30]. Resistance peaks are qualitatively explained
by gaps in the band structure and corresponding peaks in the inverse
DOS, with quantitative mismatch due to neglecting interaction and
relaxation effects.
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FIG. 16. Charge density at high-symmetry points, K, K ′, �, and M, of the two lowest bands of the continuum model for a trilayer with the
rotations reported in Ref. [30]. There are six plots for each point in the Brillouin zone. The two columns represent the two sublattices, A and B,
and the three rows represent the three layers. The central layer is shown in the central row. The horizontal and vertical axes denote the position
in real space normalized by the moiré periodicity of θ23. The parameters used are the same as in Fig. 4.
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FIG. 17. Two-dimensional plot of the energy loss function along
a high-symmetry path in the moiré Brillouin zone. Multiple branches
of plasmon can be observed, corresponding to both intra- and in-
tercollective excitation processes. The data in this figure are based
on θ12 = 1.42◦ and θ23 = −1.88◦ at the charge neutral point with
background dielectric constant ε = 4.

trilayer configuration that may be obtained from the contin-
uum model.

APPENDIX E: FURTHER COMPARISON WITH REF. [30]

The analytical methods we have used in this paper allow
us to investigate experimental observables beyond those re-
ported by Ref. [30]. For example, we may calculate the charge
density, as shown in Fig. 16, measured at the high-symmetry
points of the reduced moiré Brillouin zone and resolved by
layer (rows) and valley (columns). The angle mismatch causes
the K and K ′ points to be unequal, resulting in different charge
distributions.

We have also calculated the electron loss function for this
trilayer configuration, as shown in Fig. 17. The loss function
provides information about Landau damping and interband

FIG. 18. Static component of the dielectric function, ε(k, ω =
0), evaluated over the Brillouin zone for alternating-twist magic-
angle trilayer graphene at AAA (red) and AAB (blue) stacking
compared to that of magic-angle tBG (black). The value of ε for
trilayers is greatly increased compared to that of tBG everywhere
except the � point, indicating an overall greater degree of plasmon
screening in trilayers and thus greater robustness of the calculated
noninteracting band structures to Hartree effects.

FIG. 19. Top panel: Low-energy electronic bands for an ABA tri-
layer with {m, n} = {3,−4} and {θ12, θ23} = {0.85◦, −1.14◦}. Using
the parameters described in the main text, two flat bands are obtained
at charge neutrality point. Bottom panel: Berry curvature normalized
to 2πC when integrated over the Brillouin zone, where C = {2,−1}
is the Chern number of each band.

transition processes, which can be directly measured through
experimental techniques such as electron-energy-loss spec-
troscopy [56]. To our knowledge, this loss function has not yet
been experimentally measured. Our trilayer model predicts
multiple branches of plasmon modes, corresponding to both

FIG. 20. As in Fig. 19 but for {m, n} = {2,−3} and {θ12, θ23} =
{0.54◦, −0.81◦}. The Chern numbers are C = {1,−2}.
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intra- and intercollective excitation processes, which can be
further validated through experimental measurements.

APPENDIX F: DIELECTRIC SCREENING IN TRILAYERS

It has been widely shown that the dielectric response for
multi-twisted materials increases drastically as the bands be-
come flat [57]. The plasmon screening on electron-electron
interaction is believed to have a significant effect on the strong
correlation phenomena. One potential advantage of magic
multilayers over tBG is that the calculated noninteracting band
structures are expected to be more resilient against Hartree
effects due to the higher dielectric function from plasmon
screening.

We may verify this by calculating the static component
of the dielectric function. For simplicity, we ignore Umklapp
processes, which would give a matrix structure to the polariza-
tion, with entries labeled by moiré reciprocal lattice vectors,
G, G′. Within the framework of random-phase approximation,
the dynamic dielectric function can be calculated via

ε(k, ω) = 1 − V (k)�(k, ω), (F1)

where V (k) = 2πe2/κk is the Fourier component of the
two-dimensional Coulomb interaction, with κ being the
background dielectric constant. We choose κ = 4 in our cal-
culation, in effect assuming the substrate is hBN. �(k, ω) is
the dynamic polarization function given by

�(k, ω) = 2
∑
q,ξ

∑
m,n

(
f n
q+k,ξ − f m

q,ξ

)
F nm

q,q+k,ξ

En
q+k,ξ − Em

q,ξ − ω − i0
, (F2)

where m, n are the band index, ξ is the valley index, f m
q is the

Fermi-Dirac distribution, and F nm
q,q+k,ξ = |ψ†

n,q+k,ξψm,q,ξ |2 is
the form factor of two different Bloch states.

Results are shown in Fig. 18, which shows ε(k, ω = 0)
over the moiré Brillouin zone for alternating-twist magic-
angle trilayer graphene in the AAA and AAB configurations
and for tBG. We choose to compare with alternating twist
trilayers to remove moiré-of-moiré effects and to be able to
make direct comparisons between the Brillouin zones of the
two materials. The value of ε is seen to be D dependent, as
expected from the D dependance of the band structure, and
is noticeably higher than that of tBG everywhere except at �,
indicating that there is a greater degree of plasmon screening
in the trilayer, as expected, and that the calculated noninter-
acting bands are therefore expected to be more robust against
Coulomb interaction effects than those of tBG.

APPENDIX G: ELECTRONIC BANDS AND BERRY
CURVATURE

The flat electronic bands at magic angles studied in
the main text show finite Berry curvatures, and, generally,
nonzero Chern numbers, see also Refs. [45,47]. Examples
are given in Figs. 19 and 20. In both cases we observe a
numerically flat band at charge neutrality. Unlike in the alter-
nating twist case [19,20], the flat band appears isolated as the
differing twist angles causes the Dirac cones of all three layers
to be distributed at different points in space, leading to hy-
bridization and band repulsion. The calculated Chern numbers
are also seen to depend on twist angle. As the angles chosen
do not correspond to the same magic surface, these results
suggest that the magic surfaces may divide the configuration
space into separate topological sectors, with different bands
mixing at each surface and altering the Chern numbers.
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