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Quantized circular photogalvanic effect in Weyl
semimetals
Fernando de Juan1,2,3, Adolfo G. Grushin1, Takahiro Morimoto1 & Joel E. Moore1,4

The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches

depending on the sense of circular polarization of the incident light. It has been consistently

observed in systems without inversion symmetry and depends on non-universal material

details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and

three-dimensional Rashba materials (for example, doped Te) without inversion and mirror

symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of

the fundamental constants e, h, c and E0 with no material-dependent parameters. This is

so because the CPGE directly measures the topological charge of Weyl points, and

non-quantized corrections from disorder and additional bands can be small over a significant

range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node

is relatively large, which enables the direct detection of the monopole charge with current

techniques.

DOI: 10.1038/ncomms15995 OPEN

1 Department of Physics, University of California, Berkeley, California 94720, USA. 2 Instituto Madrileño de Estudios Avanzados en Nanociencia
(IMDEA-Nanociencia), 28049 Madrid, Spain. 3 Rudolf Peierls Centre for Theoretical Physics, Oxford OX1 3NP, UK. 4 Materials Sciences Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, USA. Correspondence and requests for materials should be addressed to F.d.J.
(email: fernando.dejuan@physics.ox.ac.uk).

NATURE COMMUNICATIONS | 8:15995 | DOI: 10.1038/ncomms15995 | www.nature.com/naturecommunications 1

mailto:fernando.dejuan@physics.ox.ac.uk
http://www.nature.com/naturecommunications


W
hen the Fermi surface of a solid is close to a linear
crossing of two bands, the low-energy quasiparticles are
relativistic Weyl fermions1–3. This linear crossing,

known as a Weyl node, is protected from becoming gapped
because it carries a monopole source of Berry curvature, which
leads to many unique experimental consequences. Materials with
this band structure have recently been predicted4,5 and
discovered6–9, primarily through observation in angle-resolved
photoemission of an unusual surface state known as a Fermi arc.
However, so far it has been challenging to find truly quantized
signatures induced by the existence of the monopole, which would
be analogous to the quantum Hall effect in two-dimensional
systems or the half-integer Hall effect at topological insulator
surfaces. The principle that quantized effects can exist in metallic
systems is demonstrated by graphene, where for a broad range of
frequencies the transmission of incident light is 1� a, where
a¼ e2/4p:cE0 is the fine structure constant10.

A feature of Weyl fermions examined recently as a potentially
quantized linear response is the anomaly induced chiral magnetic
effect11–15: the generation of a current by an applied magnetic
field. While it is now clear that there is no equilibrium current16, a
finite current is possible in the transport limit with the frequency
o-0 after the transferred momentum q¼ 0 (refs 17–19).
This current has the same origin as natural optical activity20,21. It
is determined by orbital moments rather than the chiral anomaly
and its magnitude depends on a non-universal material-dependent
property: the energy splitting between Weyl points. Other potential
probes of the chiral anomaly are nonlinear responses to both E and
B (refs 22–24), which present a characteristic angular dependence
measurable in magnetotransport experiments. Current measure-
ments show a strong angular dependence25, but the direct relation
to the chiral anomaly is subtle26. Other promising scattering
proposals could access distinct Weyl node properties27,28.

The main finding of this paper is that in a Weyl semimetal
where nodes of opposite chirality lie at different energies, the
circular photogalvanic effect (CPGE) becomes a truly quantized
response that depends only on fundamental constants and the
monopole charge of a Weyl node. The CPGE is the part of a DC
photocurrent that switches with the sense of circular polarization.
It has been measured in a variety of conventional semiconduc-
tors29,30 and more recently in topological insulators31,32. The
typical magnitude of the CPGE at low frequency corresponds to
an observed switchable photocurrent jB10–100 pA for incident
intensity of IB1 W over a cm-sized sample in quantum wells that
have time-reversal symmetry but low spatial symmetry29. It has
been obtained theoretically as a Berry phase effect33–35, possibly
the first in nonlinear optics, but there is no quantization: the
effect measures the strength of the leading allowed Berry
curvature term, which in three-dimensional (3D) materials35

can be viewed as the dipole moment of Berry curvature.
In contrast, we find that that the CPGE induced current for a

Weyl point is quantized and given by

1
2

djU
dt
� djT

dt

� �
¼ 2pe3

h2cE0
ICi¼

4pae
h

ICi; ð1Þ

where a is the fine structure constant defined above, Ci is the
integer-valued topological charge of Weyl point i and I is
the applied intensity. In this equation, the currents for left
and right circular polarization jU; jT are perpendicular to the
polarization plane, and summed over three mutually orthogonal
planes. While the quantization we find is not expected to be
exponentially protected as in gapped systems like in the quantum
Hall effect, it is robust under small material changes in the
sense that it is a direct measurement of the monopole charge in

units of fundamental constants, as opposed to the transparency of
graphene which enjoys no such interpretation.

Equation (1) describes a current whose increase in time is
proportional to intensity, known as an injection current36. It is
generated by resonant transitions at frequency o between the
occupied valence band and the unoccupied conduction band of
the Weyl node (Fig. 1). It contrasts previous finite frequency
proposals33–35,37 that originate in the low frequency response of
electronic states near the Fermi level or other high-frequency37

and interband phenomena38 where the CPGE is not quantized.
Interestingly, a CPGE was predicted for tilted Weyl nodes that lie
at the same energy39 but this effect is not quantized.

In a real material, the total Weyl node charge in the Brillouin
zone must be zero40. Crucially, this does not preclude the
observation of a finite CPGE: Weyl nodes of opposite chirality
need not be at the same energy in a low-symmetry material and
resonant transitions for a given node can be Pauli blocked,
rendering it inactive (Fig. 1). In this case, the response is constant
and quantized for a finite range of frequencies. In addition, the
key fact for experimental observability is that the prefactor of
equation (1) is large in comparison to ordinary CPGE magnitudes.
For typical relaxation times, the quantized Weyl node contribution
will dominate other metallic or insulating contributions33–35 by
more than an order of magnitude, suggesting that the total CPGE
observed in experiment will indeed reveal the quantization. In what
follows we analytically derive the quantized response equation (1)
for two-band models and then consider corrections including
those arising from additional bands. We provide supporting
numerical evidence and suggest candidate materials as well as ideas
for detection.

Results
The circular photogalvanic effect. In materials with time reversal
symmetry, an injection current can only be produced by
circularly polarized light. The CPGE injection current is defined
as the second order response

dji

dt
¼bijðoÞ EðoÞ�E�ðoÞ½ �j; ð2Þ

to an electric field E(o)¼E�(�o), where latin indices span the
cartesian components {x, y, z}. The tensor bij is purely imaginary
and only non-zero if inversion is broken and the material belongs
to one of the gyrotropic point groups (The gyrotropic point
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Figure 1 | Intraband versus interband effects in Weyl semimetals. When

inversion and mirror symmetries are broken, Weyl nodes of opposite

chiralities are generically at different energies. For intraband effects like

optical gyrotropy, both nodes contribute and the response is proportional to

the difference eL� eR. For an interband effect like the CPGE, when

2|eL|o:oo2|eR|, one Weyl node contributes exactly with the monopole

charge, while the other has zero contribution due to Pauli blocking.
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groups are C1, C2, Cs, C2v, C4, C4v, C3, C3v, C6, C6v (ferroelectrics)
and D2, D4, D2d, D3, D6, S4, T and O (ref. 41). Of them, the subset
of enantiomorphic (or chiral) groups C1, C2, C3, C4, C6, D2, D4,
D3, D6, T and O are mirror-free and can support a quantized
CPGE. The only other mirror-free group S4 has an improper
rotation which constrains the CPGE trace to be zero). The
presence of at least one mirror symmetry constrains all the
diagonal components to be zero, while the off-diagonal ones
can be finite and give a non-quantized CPGE, as in ref. 39.
Mirror-symmetry constrains the Weyl node at momentum k to
have the same energy as its partner of opposite chirality at � k,
and hence the effect must vanish. The key for the quantized
response to be observed is therefore that inversion and all mirror
symmetries are broken, as in enantiomorphic crystals, allowing
for the nodes to occur at different energies. In this case the
trace of bij is quantized for a finite range of frequencies as we
proceed to show.

The CPGE tensor b can be written in general as ref. 36

bijðoÞ¼
pe3

‘V
Ejkl

X
k;n;m

f k
nmD

i
k;nmrk

k;nmrl
k;mnd ‘o� Ek;mn

� �
; ð3Þ

where V is the sample volume, Ek,nm¼Ek,n�Ek,m and
f k
nm¼f k

n � f k
m are the difference between band energies and

Fermi-Dirac distributions respectively, rk;nm¼i n @kj jmh i is the
cross gap Berry connection and Di

k;nm¼@ki Ek;nm=‘ .

Exact quantization of the CPGE for two-band models. The
position operator matrix elements in equation (3) can be related
to Berry curvatures with the general expression36

Oc
k;n¼iEabc

X
m 6¼ n

ra
k;nmrb

k;mn; ð4Þ

where Oc
n is the Berry curvature of band n. For a model with only

two bands, this relation allows us to write

bijðoÞ¼
ipe3

‘ 2V

X
k

@ki Ek;12O
j
kd ‘o�Ek;21
� �

; ð5Þ

where 1, 2 correspond to valence and conduction bands, o40 is
assumed, and Oj

k � Oj
k;1¼�Oj

k;2. At a given frequency o, the
delta function selects the surface S in k-space where Ek,12¼ :o.
Since by definition @ki Ek;12 is normal to this surface, the trace of
b can be written as (see Methods)

Tr bðoÞ½ �¼i
e3

2h2

I
S

dS � O; ð6Þ

where dS denotes the oriented surface element normal to S.
Thus the CPGE trace measures the Berry flux penetrating
through S. In particular, when the surface S surrounds a Weyl
node (for example, located at eL, see Fig. 1), the above formula
reduces to the monopole charge of the Weyl node, yielding a
quantized CPGE

Tr bðoÞ½ �¼ip
e3

h2
CL � ib0; oo2eR; ð7Þ

where CL is the monopole charge of the Weyl node at eL. In terms
of the applied intensity I¼cE0

2 Ej j2 the quantization is given by
equation (1) as anticipated. For o42eR, the second node
contributes with opposite sign to S and quantization is
generically lost. Thus, in the ideal case of two linear Weyl
nodes at energy eL,R from the chemical potential m the
quantization holds as long as 2|eR|4o42|eL| and eLaeR. For
isotropic Weyl fermions (that is, linear dispersion with isotropic
Fermi velocity and no tilting), measuring only one component of
CPGE already suffices since bxx¼byy¼bzz¼ ib0/3.

To support these findings we have numerically calculated the
injection current for a two-band model with a characteristic
energy scale t (see Methods). Our results are summarized in
Fig. 2a) shows the band structure for representative parameters as
a function of the momentum along separating the Weyl nodes
(kz). The dashed lines outline four different chemical potentials m
for which the injection current is calculated using equation (3)
and shown in panel b). Consistent with our discussion, when the
chemical potential is chosen such that eL¼ � eR the CPGE is zero
(orange flat-line). When m coincides with the right-most node
(blue dashed line) eR¼ 0 and the CPGE is quantized to b0 from
o¼ 0. Note that although in the idealized Weyl semimetal model
quantization is expected to hold up to o¼ 2eL, in a lattice model
2eL can exceed the band width. This is the case of all non-trivial
cases in Fig. 2 and thus the quantization disappears at a frequency
ot2eL. With this caveat, for all generic choices of parameters the
CPGE is numerically quantized consistent with our analytics.

Higher band corrections. In practice, corrections from higher
bands can lead to a non-universal CPGE since the CPGE can only
be written exactly as a Berry curvature flux for two-band models.

To quantify the importance of these corrections consider a
three band model with two lower bands forming the Weyl nodes
as above that are complemented by a third unoccupied band.
Using that ra

k;nm¼� iva
k;nm=Ek;nm it is possible to rewrite

equation (3) as b(o)¼ ib0þ db(o) for small o (see Methods).
These corrections become arbitrarily small when o - 0 for m¼ 0
because vk;nm� @kHð Þmn remains a non-singular function for any
pair of bands, while Ek,nm is arbitrarily small for the two bands at
resonance forming the Weyl node. Explicitly, the correction scales
as

dbðoÞ / ivk;13�vk;13

�� ��
v2

F

o2

E2
13
; o=t 	 1; ð8Þ

where vF is a characteristic Fermi velocity around a Weyl node
and E13 is the typical energy difference between the occupied
first band and the unoccupied third band. The corrections vanish
as o2 and are inversely proportional to the energy separation
to higher bands, thus becoming unimportant at low enough
frequencies. Note as well that the matrix elements in equation (8)
are typically small for different orbitals rendering the departure
from quantization even less observable in practice.

We have assessed numerically the effect of higher bands on
quantization by calculating the CPGE of a generic four-band
model16. This model can describe Weyl semimetals with nodes at
different energies such as SrSi2 (ref. 42; see Fig. 3, top left)
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Figure 2 | CPGE quantization for a two-band Weyl semimetal model.

(a) Band structure for a generic two-band Weyl semimetal model. (b) CPGE

trace for the same model, for four different values of the chemical potential

(m/t¼ � 1.05, �0.8, 0.0, 0.55) represented as dashed lines in a. For

frequencies between the Weyl node energies the CPGE trace is quantized

to b0¼ pe3/h2 (see main text).
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relevant for our purposes and, with straightforward
modifications, Dirac semimetals. It can also describe materials
where the band edge takes the form of a 3D Rashba-like
Hamiltonian43 Hk¼k2=2mþ lr � k. This is the natural spin-orbit
splitting of parabolic bands in the absence of inversion and
mirror symmetries. It generates a single Weyl node near the band
edge, and the node of opposite chirality naturally appears at
significantly different energies (Fig. 3c). Since the contribution
of the outer Fermi surface to the CPGE is expected to be zero, a
3D Rashba material can show a quantized CPGE, and concrete
examples are discussed below.

In Fig. 3 we show the injection current for two representative
band structures: a Weyl semimetal with broken inversion
symmetry and a 3D Rashba material. In all plots m coincides
with a Weyl node; other choices behave qualitatively as described
in Fig. 2. Despite the presence of higher bands, the quantization is
robust for small frequencies for all studied cases. We find this
encouraging for experiments from both our numerical and
analytic analysis that predict that the corrections due to higher
bands are expected to be small.

Discussion
We now elaborate on the main practical aspects that suggest that
the quantized CPGE can be observed with current experiments.
In the absence of any scattering mechanism, equation (2) predicts
a quantized rate of unbounded current growth. In practice,
disorder will introduce a finite scattering rate 1/t and the linear
growth of current can only be observed for times t o t, which in
existing Weyl semimetals is tB1 ps (refs 23,44). In the limit of
t 
 t, the current saturates to jsat that can be computed from
Fermi’s golden rule or with Floquet theory (see Methods),
resulting in

jsat
i ¼tbijðoÞ EðoÞ�E�ðoÞð Þj; ð9Þ

with bij(o) defined as above. The total stationary photocurrent
will therefore be 1

2½jsat
T
� jsat

U�¼2pe3

h2ce0
It, with the universal coefficient

2pe3

h2cE0
¼22:2 A

W ps. Note this assumes the intensity I should remain
constant throughout the sample, so light absorption should be
small. The attenuation depth of a Weyl semimetal scales as

d� 1=o, and we estimate that for oo25 THz, d41 mm
(see Methods). Absorption is thus negligible for typical thin
film dimensions. Taking a thickness of 10 nm, an area of 1mm2,
and an irradiation time of 1 ps (� t), the induced photocurrent
reaches jsat ’ 2 nA= W=cm2� �

. This is much larger than the
reported CPGE current of 10–100 pA for a topological insulator
thin film32, and thus its measurement is experimentally
feasible. The additional Fermi surface contribution that can
be described semiclassically33 is estimated to be much smaller
’ 10 pA= W=cm2� �� �

so that the quantized CPGE contribution
is dominant. Surface corrections can also be neglected at normal
incidence, since the expected current is normal to the surface, and
are in any case small compared to the bulk CPGE we describe.

Experimentally, the rate of current injection can be extracted
from an all-optical setup with no free parameters as in ref. 45.
There, direct time-resolved measurements of photocurrent are
possible using short pulses of intense light. The time-dependent
photocurrent can be measured as a radiated signal of low
frequency set by the envelope of the incident pulses. Alternatively,
if only the simpler steady-state measurement is available, the
relaxation time t can be estimated from other measurements
such as the broadening of the drop at 2m in the linear
optical conductivity or from the CPGE itself by measuring
the width of the jump at ‘o� min eL; eRð Þ. The measured
value of t could be divided into the photocurrent to get the
universal CPGE quantum.

Observing quantization requires a Weyl semimetal where
inversion and all mirror symmetries are absent. The recently
realized inversion breaking Weyl semimetals in the monopnictide
class, such as TaAs (refs 6,7), do have a mirror plane in their
structure. Shear strain for example can break this symmetry,
opening a small window of frequencies to observe the effect.
A better candidate is SrSi2 (ref. 42): all mirror symmetries are
broken, the Weyl nodes of opposite chiralities are separated
significantly in energy (B0.1 eV) and the chemical potential is
close to one of the Weyl nodes. Other material candidates for
mirror-free Weyl semimetals have been recently predicted in
ref. 46. As we have shown, the quantized CPGE can also be
observed in 3D Rashba materials43 as in the conduction band of
trigonal elemental Te (ref. 47). Note that BiTeI (ref. 48) does not
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Figure 3 | CPGE for four-band models. (a) Band structure for a four-band Weyl semimetal with broken inversion symmetry. (b) CPGE trace for same

model, for chemical potential shown as a dashed line in a. (c,d) The same for a model of a 3D Rashba material. Both models show a quantized injection

current for small frequencies. The dashed vertical line in b corresponds to the frequency o=t�0:6 above which additional transitions, denoted by a solid

vertical line in a, that preclude quantization are allowed.
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have a 3D Rashba band structure despite its strong spin-orbit
splitting because of its mirror symmetries, which could also be
broken by strain. Synthetic 3D Rashba materials can be also
engineered in cold atoms43 which can be driven periodically to
study the effects presented here.

The quantization of the CPGE is not limited to linear nodes. It
can occur for any node with C41 as long as the node is formed
only by two bands49,50 and equation (4) applies, as it happens in
SrSi2 where C¼ 2. Nodal crossings with three or more bands51,
however, are not expected to display quantization of this type as
the corrections from equation (8) cannot be made small. We also
note that the quantized value of the CPGE response is
independent of any tilting of the nodes as long as they remain
of type I, but the frequency window to observe it will depend on
the tilt parameter52. If the tilting is strong enough to create a type
II node53,54, the surface of allowed transitions encompasses only a
fraction of the sphere surrounding the node and the quantization
is lost at all frequencies. We also note that, unlike optical
gyrotropy which is non-quantized and allowed for any metal with
broken inversion, the quantized CPGE can occur only in the
presence of Weyl nodes.

In conclusion, we have shown that the trace of the circular
photogalvanic tensor is quantized for Weyl semimetals and 3D
Rashba materials that break inversion and all mirror symmetries.
We have identified several candidate materials to observe this
effect, which we estimate to be an order of magnitude larger
compared to other more conventional contributions.

Methods
Analytical computation of CPGE coefficient. The CPGE tensor bij for a two band
model is given by equation (5) in the main text. The trace of this tensor is

Tr bðoÞ½ �¼ ipe3

‘ 2V

X
k

@ki Ek;12O
i
kd ‘o�Ek;12
� �

: ð10Þ

To perform the integral we use that for an isotropic Weyl node @kiEk,12¼ 2vFki/k
where k¼ |k| and therefore d(:o� Ek,12)¼ d[k� k(o)]/(2vF), where k(o)¼o/2vF,
and that Berry curvature of such Weyl node is given by Oi¼1

2ki=k3. We then get

Tr½bðoÞ�¼ e3p
‘ 2 i

Z
dO
ð2pÞ3

Z
k2dk

2vF ki

k
1
2

ki

k3

dðk� kðoÞÞ
2vF

¼i
e3p
‘ 2

4p
2ð2pÞ3

¼i
e3p
h2

:

ð11Þ

To relate this response coefficient to the applied intensity, we consider circularly
polarized light for which [E(o)�E�(o)]j¼ i|E|2nj with nj a unit vector normal to
the polarization plane. For the x� y plane, for example, we have E¼ |E|(1, i, 0)/

ffiffiffi
2
p

and nj¼ (0, 0, 1). From equation (2) the injection current induced in the z direction
is given by

@t jz¼bzz i Ej j2: ð12Þ
To get the trace, we add up the contributions from the three orthogonal directions,
defining @t jT¼ bxx þ byy þ bzz


 �
i Ej j2, and use I¼cE0 Ej j2=2

@t jT¼
e3p
h2

E2
�� ��¼ e32p

h2ce0
I¼4pa

e
h

I; ð13Þ

in terms of the fine structure constant a¼ e2/(4pE0:c). The saturation current
density with finite lifetime t is simply

jsat
T¼4pa

e
h
tI¼22:17

t
ps

I

W=cm2
A

cm2
: ð14Þ

Finally, note this quantity is by construction the one that reverses sign when
circular polarization is reversed. In practice other contributions that do not change
sign exist in addition to the quantized CPGE. These can be removed by taking
@t jT � @t jUð Þ=2 or jsat

T
� jsat

U


 �
=2 as in the main text.

Absorption and attenuation length. When light is irradiated in any conducting
material, the intensity decays exponentially from the surface I¼ I0e� ax due to
light absorption. The attenuation constant is expressed in terms of the dielectric
function as

a¼o=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �Re½E� þ Ej jð Þ

p
ð15Þ

which is related to conductivity by E¼1� 4psðoÞ
io . The conductivity of a

Weyl semimetal for o 
 m is given by Re½s�¼ e2

24pvF‘
o (ref. 55), which gives an

attenuation length d¼ 1/a

d¼l 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a c

6vF


 �2
r !vuut

� 0:23l ð16Þ

where we have used a typical Fermi velocity vF¼ 5� 105 m s� 1 (ref. 44). For
frequencies below o¼ 100 meV (n¼ 25 THz), we have l¼ 12mm and 1/a¼ 2.7 mm
so absorption is negligible for thin films in the THz range.

Higher band corrections. In this section we discuss how the quantization is
modified by the presence of higher bands. We consider the case of three bands:
Bands 1 and 2 host the Weyl nodes while we choose band 3 to be higher in energy
and unoccupied. The CPGE coefficient is explicitly

Tr½b�¼ pe3

‘V

X
k

Eabc Da
k;12rb

k;12rc
k;21d ‘o� Ek;12

� �h

þDa
k;13rb

k;13rc
k;31d ‘o�Ek;13

� �i
:

ð17Þ

If we assume that the probing frequencies are always smaller than Ek,13 then
d(:o� Ek,13) will never contribute and can be discarded. For this case

Tr½b�¼ pe3

‘V

X
k

EabcDa
k;12rb

k;12rc
k;21d ‘o� Ek;12

� �
ð18Þ

The existence of an extra band now modifies the sum rules to

Oc
k;1¼iEabc ra

k;12rb
21 þ ra

k;13rb
k;31


 �
; ð19Þ

Oc
k;2¼iEabc ra

k;21rb
k;12 þ ra

k;23rb
k;32


 �
; ð20Þ

we may write

Tr½b�¼� pe3

‘V

X
k

Da
k;12 iOa

1 þ Eabcrb
k;13rc

k;31


 �
d ‘o�Ek;12
� �

ð21Þ

Using that ra
k;nm¼� iva

k;nm=Ek;nm with va
k;nm¼ @aHð Þk;nm the quantization will

be preserved if iOa
k;1 
 Eabcvb

k;13vc
k;31=E2

k;13 for every direction a. To make a
quantitative estimate we take an isotropic Weyl node with Ek¼ vF|k| and
Ok¼k= kj j3. The correction to the quantized value can be estimated as the
dimensionless ratio of the moduli of the two vectors inside the parenthesis

db / ivk;13�vk;13

�� ��
E2

k;13= kj j2
: ð22Þ

Assuming zero chemical potential and small probing frequency and using that
around the Weyl node we have k2¼o2=v2

F we obtain

db / ivk;13�vk;13

�� ��
v2

F

o2

E2
13
: ð23Þ

Therefore at low frequencies, the corrections to the quantization of Tr[b] vanish
quadratically, since va

nm is a derivative of the Hamiltonian and cannot be singular at
the node.

Lattice models. In the main text we have used a two and a four band lattice model
which we describe here with more detail. The two band model is defined by
Hk¼dk � rþ eks0 with

dk¼� t sin kx ; t sin ky ; �Mþ t
X

i¼x;y;z

cos ki

( )
; ð24Þ

ek¼g sin kzð Þ; ð25Þ
where s0 is the 2� 2 identity matrix and r¼ sx ; sy; szð Þ the Pauli matrices. For
1o|M/t|o3 it has a pair of Weyl cones at k¼ {0, 0, ±K0} with
K0¼ cos� 1 M=t� 2ð Þ at energies E�¼ � g sin K0ð Þ. The band structure shown in
Fig. 2 corresponds to for M/J¼ 2 and g/t¼ 0.8. The chemical potential can be
controlled by adding a constant term proportional to ms0. Note that both inversion
and time reversal symmetry are broken in this model. By doubling the model one
can restore time reversal symmetry while still being inversion odd. Since multiple
copies of the model defined by equations (24) and (25) will only result in an
additional prefactor in equation (1) proportional to the number of optically active
Weyl nodes, in the main text we use the model defined by equations (24) and (25).

The second model that we use to investigate the effect of higher bands is a
four band model that can originate from an orbital degree of freedom A, B and
spin m, k. The Hamiltonian H4b in the basis defined by the electron operator
cr¼ crA"; crA#; crB"; crB#
� �T

is the sum of three terms16

H4b¼
X

k;j

DjðkÞcykG
jck þ bjc

y
kGbGjck þ b0c

y
kGbck : ð26Þ
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For a detailed discussion of the phase diagram of this model we refer the reader to
refs 16,56. Here we will highlight the aspects that are relevant to the calculation in
the main text.

The first term describes in general a trivial or topological (either weak or strong)
topological insulator and respects both time-reversal symmetry Tð Þ and inversion
symmetry Ið Þ. It is defined through the G-matrices Gj¼ (szsy, szsx, sys0, sxs0) and

DjðkÞ¼� t sin kx ; t sin ky ; t sin kz ; t
X

i

cos ki �M

 !
; ð27Þ

in the subspace where the Pauli matrices r¼ sx ; sy; szð Þ and s¼ (sx, sy, sz) act on
orbital and spin degrees of freedom respectively and s0 and s0 are identity matrices
in the corresponding subspace. The transition between trivial or topological
insulator phases is governed by M/t. In the main text we have set M/t¼ 2.5, such
that at k¼ 0 the insulating state corresponds to a strong topological insulator.

The second term defined via the matrix Gb¼ sysz and constant vector
b¼ (bx, by, bz) breaks T and drives the transition to a Weyl semimetal. The
absolute value of b controls the distance between Weyl nodes. In the main text we
have set b¼ (0, 0, t) for Fig. 3 top row and b¼ (0, 0, 0) in Fig. 3 bottom row.

The last term is defined via the constant scalar b0. It breaks I and separates the
two Weyl nodes in energy. In all of Fig. 3 we set b0/t¼ 0.5. As for the two-band
model the chemical potential is controlled by adding a constant term proportional
to ms0s0 and time reversal symmetry can be restored by an appropriate doubling of
the model.

Floquet theory derivation for CPGE. In this section, we present an alternative
derivation of the stationary photocurrent proportional to the relaxation time t by
using the Floquet theory. We again consider the two band model for the Weyl
fermion defined by Hk , where energy dispersions of the valence and conduction
bands are given by Ek,1 and Ek,2, respectively. In order to study dc current induced
by photoexcitation between the two bands, we study the Floquet two band model
consisting of the one photon dressed valence band and the bare conduction band,
which is given by ref. 57

HF¼
Ek;1 þ ‘o � ieA� vx

k;12 � ivy
k;12

h i
ieA vx

k;21 þ ivy
k;21

h i
Ek;2

0
B@

1
CA

� d0 þ d � r;

ð28Þ

with A¼ E/o and the velocity matrix element vi
k;nm¼ð1=‘ Þ nh j@ki Hk mj i. These

Floquet bands show anticrossing at the optical resonance at Ek,2�Ek,1¼ :o which
describe steady state under driving. The occupation of the Floquet bands is
determined by coupling to a heat bath which we assume to have the Fermi energy
between the valence and conduction bands. This enables us to compute steady dc
current by using Keldysh Green’s function method. Namely, by using the current
operator along the z direction in the Floquet formalism,

~vz¼ 1
‘
@HF

@kz
� b0 þ b � r; ð29Þ

the dc current in the steady state is given by ref. 57

J¼e
Z

dk

ð2pÞ3
j1 þ j2 þ j3ð Þ; ð30Þ

with

j1¼
G
2 � dxby þ dybx
� �

d2 þ G2

4

; ð31Þ

j2¼
dxbx þ dyby
� �

dz

d2 þ G2

4

; ð32Þ

j3¼
d2

z þ G2

4


 �
bz

d2 þ G2

4

þ b0: ð33Þ

The j1 term describes the shift current in the case of linearly polarized light. The j2
term does not lead to the current response proportional to relaxation time; while
the factor dz=ðd2 þ G2

4 Þ result in the factor t(k� k0)d(k� k0) with the resonant
wave number k0, this contribution vanishes after k-integration. The j3 term gives
the injection current if we consider the term proportional to |E|2. In the following,
we focus on the j3 term and derive the Berry curvature formula for the injection
current. The injection current Jinj is obtained by expanding the j3 term up to A2 as

Jinj¼� e3 Aj j2
Z

dk

ð2pÞ3
vx

k;12 � ivy
k;12

��� ���2
d2

z þ G2

4

bz : ð34Þ

We note that the O(|A|0) term in j3 vanishes after k-integral due to the band
connectivity. By noticing

vx
k;12 � ivy

k;12

��� ���2¼ vx
k;12

��� ���2 þ vy
k;12

��� ���2 � 2Im vx
k;12vy

k;21

h i
; ð35Þ

we can write

Jinj¼�
2pte3 Aj j2

‘

Z
dk

ð2pÞ3
vz

k;11 � vz
k;22

h i
d dzð Þ

� vx
k;12

��� ���2 þ vy
k;12

��� ���2 � 2Im vx
k;12vy

k;21

h i� �
;

ð36Þ

where t¼ :/G is the relaxation time and dðxÞ¼lima!0ð1=pÞa= x2 þ a2ð Þ. Since the
integrand of the first term is odd under the time-reversal symmetry, the first term
vanishes after k-integration. The second term is described by the Berry curvature
Oz

k by using the identity

Oz
k¼� 2

Im vx
k;12vy

k;21

h i
Ek;1 � Ek;2
� �2 : ð37Þ

Thus we obtain the injection current in time reversal-symmetric systems as

Jinj¼�
2pe3t Ej j2

‘

Z
dk

ð2pÞ3
vz

k;11 � vz
k;22

h i
Oz

kd Ek;12 þ‘o
� �

: ð38Þ

Alternatively, since the Berry curvatures for the valence and conduction bands
satisfy the relation Oz¼Oz

1¼�Oz
2, this can be rewritten as

Jinj¼�
e3t Ej j2

h2

Z
dk

@ Ek;1 � Ek;2
� �

@kz
Oz

k

� �
d Ek;12 þ‘o
� �

: ð39Þ

Namely, the nonlinear coefficient b (in Ji¼ tbij[E�E�]j) is given by

bzz¼i
e3

2h2

Z
dk

@ Ek;1 �Ek;2
� �

@kz
Oz

k

� �
d Ek;12 þ ‘o
� �

: ð40Þ

Thus the sum of the nonlinear conductivities Tr[b]¼ bxxþ byyþbzz is described
by the Berry flux over the surface S of the resonance condition in k-space as

Tr½b�¼i
e3

2h2

Z
S

dS � Ok ; ð41Þ

where dS denotes the oriented surface element normal to S. When the surface S
surrounds a Weyl point, this leads to quantized injection current as

Tr½b�¼i
pe3

h2
: ð42Þ

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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