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Abstract
We study the interaction between graphene and a single-molecule-magnet, [Fe4(L)2(dpm)6]. Focusing
on the closest Iron ion in a hollow positionwith respect to the graphene sheet, we derive a channel
selective tunnelingHamiltonian, that couples different d orbitals of the Iron atom to precise
independent combinations of sublattice and valley degrees of freedomof the electrons in graphene.
When looking at the spin-spin interaction between themolecule and the graphene electrons, close to
theDirac point the channel selectivity results in a channel decoupling of theKondo interaction, with
two almost independent Kondo systemsweakly interacting among themselves. The formation of
magneticmoments and the development of a full Kondo effect depends on the charge state of the
graphene layer.

Introduction

Since the low-temperaturemagnetic phase transition ofmetals withmagnetic impurities diluted inwas
explained byKondo [1] in themiddle of the past century, the theoretical framework has been extensively
developed [2–6]. Over time, the problemhas been extended, particularly with the discovery of themultichannel
Kondo effect [7] and the study of the interactions between twomagnetic impurities [8, 9]. In carbon 2D
materials, a double degeneracy appears in spin and orbitalmomentum. This double degeneracy allows the
emergence of a symmetric SU(4)Kondo effect with a strong coupling between the spin and orbital degrees of
freedom [10–13]. The special condition of graphene, positioned halfway betweenmetals and semiconductors,
appears as an appealing scenario for Kondo physics. Its linear dispersion relation, and the ease to tune its
chemical potential are important elements too [14–17]. Atomic vacancies in the graphene lattices were the first
system inwhichmagnetic transitionswere founded [18]. The relaxation of the lattice around the vacancy can be
solved changing the vacancy by an hydrogen impurity localized on top site [19]. The strong coupling of the
impurity and the carbon atomgenerates a localizedmagneticmoment by the subtraction of one electron from
the Fermi sea [20].Magneticmolecules [21] offer an easy way to study themagnetic interaction between
graphene and localized spinmoments due to its clearmagnetic properties. Functionalized hybrid of graphene
and one of thismolecules, [Fe4(L)2(dpm)6], shows interesting properties for the study of themagnetic phase
transition [22–25].We expect other Fe compoundsmay present similar features.

In this workwe describe in detail the interactions between amagneticmolecule and graphene. Initially we
simplify the problem considering only the nearest Fe(III) ion to the graphene and subsequently incorporate to
the problem the influence of the other ions. The interplay between the different degrees of freedomof the
graphene electrons (valley, pseudospin, and spin)with the projection of the angularmomentum and the spin of
the electrons in themolecule leads to a channel selectivity of the coupling. The type and number of the channels
that can couple to themolecule depend on the site that themolecule occupies on the lattice. If themolecule is in
the center of the hexagon just two independent combinations of valley, pseudospin and spin are tunnel coupled
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to the two relevant orbitals of the Fe(III) ion in the core of themolecule. Due to the orthogonality of the graphene
electronic channels involed, we observe the absence of the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction between the two orbitals of themolecule, giving rise to a double single-channel Kondo coupling. The
analysis presented is not limited to the particular case of the tetra-iron singlemoleculemagnet [Fe4(L)2(dpm)6],
but can be easily extended to othermolecules and Fe based compounds based on Fe(III) ions.

Themodel

Weconsider a graphene sheet described by a nearest neighbor hoppingHamiltonian

å= - +
á ñ

H t a b h. c ., 1G
i j s

s i s j
, ,

, , ( )†

where a, b are fermionic operators that annihilate an electronwith spin s= ↑ ↓ , on sublatices A andB,
respectively, and t∼ 2.7 eV is the hopping energy between next nearest neighbors. Inmomentum space hopping
between ak and bk is specified by g = - åt ei

i
k

k cj· , with = xc 31 ˆ , = - +x yc 3 2 32 ( ˆ ˆ) ( ), = - +xc3 ( ˆ
y3 2 3ˆ) ( ), nearest-neighbors vectors. Expansion of γk around theDirac points±K= (0,± 2π/3) produces

the celebrated grapheneDiracHamiltonian.
We then consider a single-molecule-magnet (SMM), [Fe4(L)2(dpm)6] [21, 22] added on top of the graphene

sheet. It is amolecule with a S= 5 spinmoment due to the four Fe(III) ions in its core [26], and it is well
described by theHamiltonian [22]

å å= + ¢
= á ñ ¹

H J JS S S S , 2SSM
i

mol i
i j i j

mol i j
2

4

1
, , 1

( · ) ( · ) ( )
( )

where Jmol and ¢J mol are the exchange couplings between nearest and next nearest Iron atoms, respectively. Si are
the S= 5/2 spinmatrices describing the spin of each Iron ion. As shown in figure 1, Fe1 is one ion surrounded by
the other three. The coupling Jmol> 0 is antiferromagnetic whereas the coupling ¢ <J 0mol is ferromagnetic,
with ¢J Jmol mol∣ ∣  . This way, the three outer ions, Fe2,3,4 anti alignwith respect to the central ion Fe1.

Since the distance of the graphene sheet to the ion Fe2 ismore than twice smaller than the distance to the
other ions, the tunneling from graphene to themolecule involves only the ion Fe2, see figure 1.We then focus on
Fe2 and consider the effect of other three ions by their contribution in the energy levels of Fe2. Fe(III) hasfive
electrons distributed infive spin-degenerate outermost d-orbitals. In the S= 5/2 state, allfive d-orbitals are
singly occupied and the spin of the ion can be described as the sumoffive aligned localized spin 1/2. The
Hamiltonian of the ion Fe2 reads

å= +H d d H , 3
m s

m s m s m s UFe
,

, , ,2 ( )†

where dm,s are fermionic operators describing the five d-orbitals, òm,σ their associated energies,m is the angular
moment projection of the different states of angularmomentum l= 2. The symmetry of the system, (C3v), shifts
the energy of the orbitals of the Fe(III) ion creating two pairs of degenerate states with the same |m|≠ 0. In the
case of the Fe (III) ions the lowest levels are the doublets =  -d d id 2x y xy2 2( ) .

The electrostatic repulsion between the Fe(III) electrons ismeasured by ¢Umm , and the exchange energy ¢Jmm ,
between the localized electrons in different orbitals.

Figure 1. (a), Schematic representation of an impurity on hollow position, at the center of the graphene hexagon. In our casewemodel
themolecule by considering only the nearest Fe ion (Fe2). (b), Scheme of themolecular core of the [Fe4(L)2(dpm)6]. The Fe ions (black)
are coupled via pairs of oxygen atoms (red). Hydrogen atoms andmost external carbon atoms have been omitted for clarity.
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where =n d dm s m s m s, , ,ˆ † . For simplicity we are going to consider = ¢U Umm mm and = ¢J Jmm mm .

TunnelingHamiltonian

Themost stable position for atoms such as Fe on a graphene lattice is at the center of the hexagons, the hollow
site [27–31], which is the case that wewill consider here. For the hollow position theHamiltonian describing the
tunneling between the localized states of the impurity and the conduction electrons of graphene can be
generically written as

åå= + - +
=

H V a V b da a h. c ., 5V
m s i

a i
m

s i a i
m

s i m s
, 1

3

, , ,[ ( ) ( )] ( )† †

whereVc i
m
, (c= a, b) are tunnelingmatrix elements between the localized states with angularmomentummwith

each of the six carbon atoms surrounding the hollow position. These can be specified by a unique Slater-Koster-
likematrix elementV. States withm=± 2 on the Fe ion are invariant under ¥C z , and the tunneling process
selects combinations of ak and bk that are C

z
3 invariant. This yields a selectivity between angularmomentumm,

sublattice and valley5. By expanding the expression around theDirac points the tunnelingHamiltonian takes the
form,

å= + + + ++ ¢ - ¢H
V

d a b d a b
2

H.c ., 6V K K K K
k

k k k k, , , ,( ) ( ) ( )† †

where a factor 3 2 has been reabsorbed inV and the spin label has been suppressed, as the tunneling conserves
the spin. This expression can be considered as a low energy expansion around theDirac point of graphene, in
powers of the electron energy, ò/W, whereW is thewidth of the pz band in graphene. Corrections to the
couplings, as themomenta of the graphene states deviates from theDirac point are neglected.

The tunneling term connects the graphene states only with |m|= 2 orbitals of Fe2. The ground state
configuration of the Fe ions consists infive electronswith the same Sz=± 1/2, the ground state has S= 5/2,
and thefirst excited states with S= 3/2, 1/2 are less than 5 and 7meV above the ground state [21, 22]. The states
with integer Sz aremuchmore energetic, as schematically depicted infigure 2.Due to the small difference
between the four low-energy states, we can neglect the splitting between them, and consider all of them as
degenerate. This assumption implies that the energy required toflip the spin of a given orbital is negligible.We
keep, on the other hand, the crystal field splitting between orbitals with different values of |m|, of order
1470 cm−1≈ 0.18 eV [21]\cite{Uchoa1}. Hence, the interaction between the graphene electrons and the Fe2
ion is through the atomic orbitals of energy closest to theDirac point of graphene, whichwe assume to have
m=± 2 (the calculations are equivalent form=± 1).

Figure 2.Diagram of the energies of the different states considered for the Fe(III) ion, including the splitting due to ligandfields due to
the environment. (a), Scheme of energy splitting: half-integer and integer spin configurations are split byU ∼ eV. The configuration
with the central spinsflipped is split by the crystalfield. (b), The system can be described by the eight states shown in thefigure. Double
occupied states lie at higher energies. The neglected energy splitting due to the spin flip of the |m| = 2 is schematically reported
magnified.

5
The explicit calculations are in the SupplementaryMaterial available online at stacks.iop.org/JPCO/5/075010/mmedia.

3

J. Phys. Commun. 5 (2021) 075010 IMVicent et al

http://stacks.iop.org/JPCO/5/075010/mmedia


Wenowdiagonalize the grapheneHamiltonian around theDirac points and introduce eigenoperators
bt= +b t t

tq
tc a e b 2s s

i
sk k k, , , , , , ,

k( ) , with q = k ktan y xk ,β=± distinguishing between valence and
conduction bands, and τ=± indexing the valley. TheHamiltonian of the Fe2 ion and the graphene electrons
reads

å å= +

+ -

t b
b b t b t

=

 H c c d d

U
N N

2
1 . 7

s
s s

m s
m s m s

d d

k
k k k0

, , ,
, , , , , , ,

2,
0 , ,

( ) ( )

† †

The formof the tunneling suggests the introduction of two new fermionic operators representing the two
independent combinations of sublattice and valley appearing in equation (6), = åa b t b t

a
b tC A cs sk k, , , , , , , , so that

the tunneling term reads = å +a a aH V C d H.c.V s s sk k, , , , ,
† , where the twom orbitals have been relabelled as

α= L,R=± 1 (See footnote 6), in analogywith a double-dot configuration.

Effective low-energymodel

In order to see the conditions forwhich the hopping to graphene can quench this localizedmoment, we derive
an effective spin-spin coupling between the graphene electrons and the Fe2 ion via eliminating the tunneling at
first order through thewell known Schrieffer–Wolff transformation [32]. The latter consists in defining a new
Hamiltonian H̃ that is obtained via a unitary transformation = = + + +¼-H e He H S H S S H, , , ,S S 1

2
˜ [ ] [ [ ]]

with S an antiHermitian operator on order of the tunnelingHV. By requiring

=H S H, , 8V0[ ] ( )

the tunnelingHamiltonianHV is eliminated atfirst order. By further truncating the expansion at second order
the effectiveHamiltonian reads

= +H H S H
1

2
, . 9V0˜ [ ] ( )

In this problem the existence of different interacting electrons in the ion adds a non-trivial difficulty. Given the
formofHV, the operator S is given by the following expression

å=
+ + - -

-
a m t

mt
a

a m t

m 
S

V P d c P

i j U1
H.c .. 10

ij s

i s s j

k

k

k, , , , ,

, , , ,

0 ,( )
( )

†

where =mt
a

mt
aV VA andPi are the projector operators for the double dot system that satisfy∑i=0,4Pi= 1, with i

labelling the number of electrons in the double dot. The correction to the unperturbedHamiltonianH0 is
composed by several terms and takes the form

¢ = = + + +H S H H H H H
1

2
, . 11V ch mix CK[ ] ( )

The result consists in a Kondo term and a charge term, plus amixing term and aCooper term. The latter is
composed by terms like c†c†dd, that we discard. TheHamiltonian ¢H needs to be projected onto the desired
subspace, that for the present problem is the double occupancy subspace. Therefore, a further step is carried on
as ¢  ¢H P H P2 2.

EffectiveKondoModel

The double occupancy subspace is in turn composed by states with one electron per dot and states with two
electrons in one dot and zero in the other.However if we consider instead of the equal repulsion interaction for
the intra-orbital and inter-orbital case that one inwhich, ¢U Um m m m, , with ¢ ¹m m, we can neglect the double
occupancy cases.We then carry on a second projection as ¢  ¢ = +H P P H P P H HL R L R ch1 1 1 1 K . Sincewe are
concerned only in theKondo termwe leave the full expression ofHch to the Sup.Mat.6. Introducing a cumulative
indexμ≡ {μ, τ, k}, the full effective KondoHamiltonian reads

6
SupplementaryMaterial containing details of the Schrieffer–Wolff transformation.
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with the coupling constant given by
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TheKondoHamiltonian is still quite involved at this stage, as itmixes different bands and couples different
channels. However, close to theDirac point we have that òβ,k= ò0,U andwe can safely neglect the energy
dependence in the coupling. This procedure highly simplifies the expression and highlights the channel
selectivity contained in the tunnelingHamiltonianHV. Due to destructive interference the two orbitals L andR
separately couple to two independent channels in the valley and sublattice space.

At theDirac points atK and ¢K wedefine the graphene eight-component spinorΨk and the iron
2-component spinor Y =a a a d d,, ,( )† † † . The expression for theKondoHamiltonian reads

å= - Y S Y Y Y
a

a a a a
¢

¢H J s S , 14K
k k

k k
, ,

· ( )† †

where s and Sα are the spin 1/2 Paulimatrix vectors of graphene and of the different orbitals (α= L,R) of the
iron (See footnote 6)The operatorsΣα=L,R are given by

s t s t s tS = - + +1 , 15R z z x x y y ( )

s t s t s tS = + + -1 , 16L z z x x y y ( )

withσi, τi, sublattice and valley Paulimatrices, and define two independent channels in sublattice and valley
space,ΣLΣR= 0.We then see that close to theDirac point a channel decoupling takes place and the two iron
orbitals couple to different subspaces of the grapheneHamiltonian, yielding a double single-channel Kondo
Hamiltonian. The coupling constant J reads

=
+ + 

J
V U

U U

4

2 4
, 17

2

0 0( )( )
( )

in complete analogywith the original KondoHamiltonian derived by Schrieffer andWolff from the single
impurity Andersonmodel [32]. The sign of the coupling is negative for 2U<− ò0< 4U, that is assumed to be
the ground state energy of the doubly occupied double dot problem, so that the overall Kondo spin-spin
interaction is antiferromagnetic.

RKKY interaction

Wenow look at the possibility that the graphene electronsmediate an effective interaction between the L andR
spins through theRKKY interaction. Considering that the two spins sit at the same spatial position, the RKKY
interaction at second order in the coupling J reads

å c=
m n

m n m nH S S , 18
L R

RKKY
,

,
ˆ ˆ ( )

withμ, ν= x, y, z labelling the spin components andwith the effective spin-spin susceptibilityχμ,ν defined as

å åc
b

= S Sm n
w

n w m w
¢

¢J s G s G
1

Tr . 19
k k i

L k R k,
,

2
,

0
,

0

n

n n
[ ] ( )

Having neglected the dependence of J on themomentum, integration of the grapheneGreen’s function over
momentum rules out itsmatrix structure andwe are left with

c µ S S =m n m ns sTr 0, 20L R, [ ] ( )

where the last equality follows from the orthogonality of the two channels defined byΣL,R.We then conclude
that themodel equation (14) effectively described two independent single-channel KondoHamiltonians.
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Role of other ions

Wenowfinally discuss the role played by the other ions in the description of the spin-spin interaction between
themolecule and the graphene sheet. The antiferromagnetic coupling between nearest neighbor ions in the
molecule can be seen as the result of onsiteHubbard repulsion on each ion, at second order in the hopping
between ions. Going a step back, wemodify theHamiltonian asH=HM+Ht+HV+HG, whereHt describes
hopping between the ions in themolecule andHM the onsiteHubbard repulsion on each ion. TreatingHt and
HV on equal footing, we can perform a joint Schrieffer–Wolff transformation through S= SV+ St and eliminate
both tunneling terms atfirst order. The full second order correction reads ¢ = + +H S S H H,V t t V

1

2
[ ], where

SV given in equation (10) St accounts for intramolecular transitions (see Sup.Mat. (See footnote 6)). Out of
the resulting four different terms, [SV,HV] results in theKondoHamiltonian so far discussed and [St,Ht]=
∑i=1,3,4JS2Si [21, 22, 26]. The additional correction produces awell know term in the t− Jmodel [33] that reads

å¢ = ¢ - +
m

m mH V d c n d c d dS S H.C ., 21t V
s

s s,
,

,2 , 1 2 1 1
⎛

⎝
⎜

⎞

⎠
⎟ ( )† † †

and describes a spinmediated hopping that represents a perturbation of theKondoHamiltonian.

Discussion

To summarize, we have studied the interaction between graphene and amolecularmagnet.We have focused in
themost stable and symmetric case, with the core of themolecule being at the center of a graphene hexagon. The
leading coupling, equation (14), shows twoKondo couplings involving them=± 2 orbitals in the Iron ion
nearest to the graphene layer. The interactionwith the other ions involves exchange interaction only at fourth
order in perturbation theory. This coupling could be seen as a source of instability at low temperatures. These
twoKondo systems involve different combinations of valley and sublattice indices in the graphene layer. Exactly
at theDirac point, the vanishing density of states of graphenemakes theKondo coupling irrelevant, although
twoKondo singlets will be formed for sufficiently large values of the coupling J. Away from theDirac point, the
Kondo coupling becomesmarginally relevant, and, at the same time, an effective coupling between the two
Kondo systemswill develop through the graphene electrons. These two effects are of comparable strength, and
they can lead to a rich phase diagram. The nature of themost stable phases depends on details at the atomic scale
outside the scope of this work.
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