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Abstract

We study the interaction between graphene and a single-molecule-magnet, [Fey(L),(dpm)e]. Focusing
on the closest Iron ion in a hollow position with respect to the graphene sheet, we derive a channel
selective tunneling Hamiltonian, that couples different d orbitals of the Iron atom to precise
independent combinations of sublattice and valley degrees of freedom of the electrons in graphene.
When looking at the spin-spin interaction between the molecule and the graphene electrons, close to
the Dirac point the channel selectivity results in a channel decoupling of the Kondo interaction, with
two almost independent Kondo systems weakly interacting among themselves. The formation of
magnetic moments and the development of a full Kondo effect depends on the charge state of the
graphene layer.

Introduction

Since the low-temperature magnetic phase transition of metals with magnetic impurities diluted in was
explained by Kondo [1] in the middle of the past century, the theoretical framework has been extensively
developed [2—6]. Over time, the problem has been extended, particularly with the discovery of the multichannel
Kondo effect [7] and the study of the interactions between two magnetic impurities [8, 9]. In carbon 2D
materials, a double degeneracy appears in spin and orbital momentum. This double degeneracy allows the
emergence of a symmetric SU(4) Kondo effect with a strong coupling between the spin and orbital degrees of
freedom [10-13]. The special condition of graphene, positioned halfway between metals and semiconductors,
appears as an appealing scenario for Kondo physics. Its linear dispersion relation, and the ease to tune its
chemical potential are important elements too [14—17]. Atomic vacancies in the graphene lattices were the first
system in which magnetic transitions were founded [ 18]. The relaxation of the lattice around the vacancy can be
solved changing the vacancy by an hydrogen impurity localized on top site [19]. The strong coupling of the
impurity and the carbon atom generates a localized magnetic moment by the subtraction of one electron from
the Fermi sea [20]. Magnetic molecules [21] offer an easy way to study the magnetic interaction between
graphene and localized spin moments due to its clear magnetic properties. Functionalized hybrid of graphene
and one of this molecules, [Fey(L),(dpm)s], shows interesting properties for the study of the magnetic phase
transition [22-25]. We expect other Fe compounds may present similar features.

In this work we describe in detail the interactions between a magnetic molecule and graphene. Initially we
simplify the problem considering only the nearest Fe(IIT) ion to the graphene and subsequently incorporate to
the problem the influence of the other ions. The interplay between the different degrees of freedom of the
graphene electrons (valley, pseudospin, and spin) with the projection of the angular momentum and the spin of
the electrons in the molecule leads to a channel selectivity of the coupling. The type and number of the channels
that can couple to the molecule depend on the site that the molecule occupies on the lattice. If the molecule is in
the center of the hexagon just two independent combinations of valley, pseudospin and spin are tunnel coupled
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Figure 1. (a), Schematic representation of an impurity on hollow position, at the center of the graphene hexagon. In our case we model
the molecule by considering only the nearest Fe ion (Fe,). (b), Scheme of the molecular core of the [Fe,(L),(dpm1)g]. The Fe ions (black)
are coupled via pairs of oxygen atoms (red). Hydrogen atoms and most external carbon atoms have been omitted for clarity.

to the two relevant orbitals of the Fe(III) ion in the core of the molecule. Due to the orthogonality of the graphene
electronic channels involed, we observe the absence of the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction between the two orbitals of the molecule, giving rise to a double single-channel Kondo coupling. The
analysis presented is not limited to the particular case of the tetra-iron single molecule magnet [Fe,(L),(dpm)e],
but can be easily extended to other molecules and Fe based compounds based on Fe(III) ions.

The model

We consider a graphene sheet described by a nearest neighbor hopping Hamiltonian

Ho=—t). alibs,j—i—h.c., (1)
(irj)ss

where a, b are fermionic operators that annihilate an electron with spins = 1 | , on sublatices A and B,
respectively, and t ~ 2.7 eV is the hopping energy between next nearest neighbors. In momentum space hopping
between a, and by is specified by v, = —t3; e'*%, with ¢, = £//3, 0 = =X + V39)/(2V3), 63 = (=% +
J39)/(24/3), nearest-neighbors vectors. Expansion of 7y around the Dirac points & K = (0, & 27/3) produces
the celebrated graphene Dirac Hamiltonian.

We then consider a single-molecule-magnet (SMM), [ Fe,(L),(dpm)g] [21, 22] added on top of the graphene
sheet. It is a molecule with a S = 5 spin moment due to the four Fe(IIT) ions in its core [26], and it is well
described by the Hamiltonian [22]

4
Hssm =Y Jmot(S1-S) + > Jwad'(Si - S)), 2

i=2 (i,j) (i,j=1)

where J,,,,;and J',,; are the exchange couplings between nearest and next nearest Iron atoms, respectively. S; are
the S = 5/2 spin matrices describing the spin of each Iron ion. As shown in figure 1, Fe; is one ion surrounded by
the other three. The coupling J,,,.; > 0 is antiferromagnetic whereas the coupling J,,o;" < 0 is ferromagnetic,
with |[J/ 01l <€ Jimor- This way, the three outer ions, Fe; 3 4 anti align with respect to the central ion Fe;.

Since the distance of the graphene sheet to the ion Fe, is more than twice smaller than the distance to the
other ions, the tunneling from graphene to the molecule involves only the ion Fe,, see figure 1. We then focus on
Fe, and consider the effect of other three ions by their contribution in the energy levels of Fe,. Fe(III) has five
electrons distributed in five spin-degenerate outermost d-orbitals. In the S = 5/2 state, all five d-orbitals are
singly occupied and the spin of the ion can be described as the sum of five aligned localized spin 1/2. The
Hamiltonian of the ion Fe, reads

HFez = Z 6m)5d;,’5dm,s + HU) (3)

m,s

where d,,, ;are fermionic operators describing the five d-orbitals, ¢,,, , their associated energies, m is the angular
moment projection of the different states of angular momentum / = 2. The symmetry of the system, (Cs,), shifts
the energy of the orbitals of the Fe(I) ion creating two pairs of degenerate states with the same || = 0. In the
case of the Fe (III) ions the lowest levels are the doublets d.. = (d,>—,» £ id,,) V2.

The electrostatic repulsion between the Fe(III) electrons is measured by U,,,,,, and the exchange energy J,,.»
between the localized electrons in different orbitals.
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Figure 2. Diagram of the energies of the different states considered for the Fe(III) ion, including the splitting due to ligand fields due to
the environment. (a), Scheme of energy splitting: half-integer and integer spin configurations are splitby U ~ eV. The configuration
with the central spins flipped is split by the crystal field. (b), The system can be described by the eight states shown in the figure. Double
occupied states lie at higher energies. The neglected energy splitting due to the spin flip of the || = 2 is schematically reported
magnified.

HU - Z Um,m’ﬁm,Tﬁm’,l

m,m’
1 PO

+ —Zs Z (Um,m’ - ]m,m’)nm,snm’,s- (4)
2 m=m'

where i, ; = d

s Am,s- For simplicity we are going to consider U, = Uy and Jm = Jm'

Tunneling Hamiltonian

The most stable position for atoms such as Fe on a graphene lattice is at the center of the hexagons, the hollow
site [27-31], which is the case that we will consider here. For the hollow position the Hamiltonian describing the
tunneling between the localized states of the impurity and the conduction electrons of graphene can be

generically written as
3
Hy = 3_3 Vil @) + Vbl (—a)ldus + h. ., 5)
m,si=1
where V" (c = a, b) are tunneling matrix elements between the localized states with angular momentum # with

each of the six carbon atoms surrounding the hollow position. These can be specified by a unique Slater-Koster-
like matrix element V. States with m = & 2 on the Fe ion are invariant under CZ, and the tunneling process
selects combinations of ay and by that are C invariant. This yields a selectivity between angular momentum 1,
sublattice and valley’. By expanding the expression around the Dirac points the tunneling Hamiltonian takes the
form,

-V
V2

where a factor 3/+/2 has been reabsorbed in V and the spin label has been suppressed, as the tunneling conserves
the spin. This expression can be considered as alow energy expansion around the Dirac point of graphene, in
powers of the electron energy, €/ W, where W is the width of the p, band in graphene. Corrections to the
couplings, as the momenta of the graphene states deviates from the Dirac point are neglected.

The tunneling term connects the graphene states only with |m| = 2 orbitals of Fe,. The ground state
configuration of the Fe ions consists in five electrons with the same S, = &+ 1/2, the ground state has S = 5/2,
and the first excited states with S = 3/2, 1/2 are less than 5 and 7 meV above the ground state [21, 22]. The states
with integer S, are much more energetic, as schematically depicted in figure 2. Due to the small difference
between the four low-energy states, we can neglect the splitting between them, and consider all of them as
degenerate. This assumption implies that the energy required to flip the spin of a given orbital is negligible. We
keep, on the other hand, the crystal field splitting between orbitals with different values of ||, of order
1470 cm ™' &2 0.18 eV [21]\ cite{ Uchoal }. Hence, the interaction between the graphene electrons and the Fe,
ion is through the atomic orbitals of energy closest to the Dirac point of graphene, which we assume to have
m = =£ 2 (the calculations are equivalent for m = + 1).

Hy ST di(ak + b)) + dl(ax + bik) + Heeo, (6
K

> The explicit calculations are in the Supplementary Material available online at stacks.iop.org/JPCO/5/075010/mmedia.
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We now diagonalize the graphene Hamiltonian around the Dirac points and introduce eigenoperators
s = (Ars + BTe™xby o) / V2, with tan 6, = k, /k., 3= + distinguishing between valence and
conduction bands, and 7 = =+ indexing the valley. The Hamiltonian of the Fe, ion and the graphene electrons
reads

Hy = Z fﬁ,kcﬂ,g,T,ka,ﬂ,T,s-l— Z fodr;v,sdm,s
ks, 7,3 m==2,s

NN = 1), @)

The form of the tunneling suggests the introduction of two new fermionic operators representing the two
independent combinations of sublattice and valley appearing in equation (6), Cy a,s = 3.5 ;A§ 7 €k, 6,7, SO that

the tunneling term reads Hy = VY, . C{ | da. + H.c., where the two m orbitals have been relabelled as
a =L, R= £ 1(See footnote 6), in analogy with a double-dot configuration.

Effective low-energy model

In order to see the conditions for which the hopping to graphene can quench this localized moment, we derive
an effective spin-spin coupling between the graphene electrons and the Fe, ion via eliminating the tunneling at
first order through the well known Schrieffer—Wolff transformation [32]. The latter consists in defining a new
Hamiltonian H that is obtained via a unitary transformation H = eSHe 5 = H + [S, H] + % S, [S, H]]+...,
with S an anti Hermitian operator on order of the tunneling Hy. By requiring

[HOa S] = HV) (8)

the tunneling Hamiltonian Hy is eliminated at first order. By further truncating the expansion at second order
the effective Hamiltonian reads

~ 1
H = Ho + - [S, Hy) ©)
In this problem the existence of different interacting electrons in the ion adds a non-trivial difficulty. Given the
form of Hy, the operator S is given by the following expression

« T
V,uT Pi do:,s C,U«,T,k,spj

i, 1, 7,K, €o + (l +] - I)U - 6N,k

S =

— Hc.. (10)

where Vi = VA and P;are the projector operators for the double dot system that satisfy Yo 4P; = 1, with i

labelling the number of electrons in the double dot. The correction to the unperturbed Hamiltonian Hy is
composed by several terms and takes the form

1
H = E[S> Hy] = Hx + Hy + Hyix + He. (11)

The result consists in a Kondo term and a charge term, plus a mixing term and a Cooper term. The latter is
composed by terms like ¢'c'dd, that we discard. The Hamiltonian H' needs to be projected onto the desired
subspace, that for the present problem is the double occupancy subspace. Therefore, a further step is carried on
asH' — PzHlpz.

Effective Kondo Model

The double occupancy subspace is in turn composed by states with one electron per dot and states with two
electrons in one dot and zero in the other. However if we consider instead of the equal repulsion interaction for
the intra-orbital and inter-orbital case that one in which, U, ,, > U, v with m’ = m, we can neglect the double
occupancy cases. We then carry on a second projectionas H' — Py Pir H'Py; Pip = Hy + Hg,. Since we are
concerned only in the Kondo term we leave the full expression of H,, to the Sup. Mat.’. Introducing a cumulative
index p = {u, 7, k}, the full effective Kondo Hamiltonian reads

6 Supplementary Material containing details of the Schrieffer—Wolff transformation.

4
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= lepurdgyda) + ¢l d] day

Hy=-)

app’
Lo t i +
+ E(CIL/TC#T — C/L’J,Cﬂl)(daTdaT — da'idal)]’ (12)

with the coupling constant given by

1 1
]nz , = VOz VO! k +
fopt n (Vi) co+2U—¢, €+2U— ¢y
ayrak 1 !
= ViV + ’ (1
€0+4U—¢, e+ 4U— ¢y

The Kondo Hamiltonian is still quite involved at this stage, as it mixes different bands and couples different
channels. However, close to the Dirac point we have that €5 < €, U and we can safely neglect the energy
dependence in the coupling. This procedure highly simplifies the expression and highlights the channel
selectivity contained in the tunneling Hamiltonian Hy. Due to destructive interference the two orbitals L and R
separately couple to two independent channels in the valley and sublattice space.

At the Dirac points at Kand K’ we define the graphene eight-component spinor ¥y and the iron
2-component spinor W}, = (d/ ., d} ). The expression for the Kondo Hamiltonian reads

Hy=—] > US,s¥p - VS, T, (14)
kK«
where sand S, are the spin 1/2 Pauli matrix vectors of graphene and of the different orbitals (o = L, R) of the
iron (See footnote 6) The operators ¥,z r are given by

Sp=1— 0,7, + 0xTx + 0,7y, (15)
Yp=14 07+ 07 — 07y (16)

with ¢;, 7, sublattice and valley Pauli matrices, and define two independent channels in sublattice and valley
space, 21X = 0. We then see that close to the Dirac point a channel decoupling takes place and the two iron
orbitals couple to different subspaces of the graphene Hamiltonian, yielding a double single-channel Kondo
Hamiltonian. The coupling constant ] reads

B 4V2U
(eo + 2U) (o + 4U)’

17)

in complete analogy with the original Kondo Hamiltonian derived by Schrieffer and Wolff from the single
impurity Anderson model [32]. The sign of the coupling is negative for 2U < — ¢, < 4U, that is assumed to be
the ground state energy of the doubly occupied double dot problem, so that the overall Kondo spin-spin
interaction is antiferromagnetic.

RKKY interaction

We now look at the possibility that the graphene electrons mediate an effective interaction between the L and R
spins through the RKKY interaction. Considering that the two spins sit at the same spatial position, the RKKY
interaction at second order in the coupling ] reads
AL AR
Hrriy = D X090 S0 (18)

8%

with j1, v = x, y, zlabelling the spin components and with the effective spin-spin susceptibility x,, defined as

1
Xpw = 2 TP => T [0s, GOy Yrsu G, ). (19)
kK’ iwy,

Having neglected the dependence of ] on the momentum, integration of the graphene Green’s function over
momentum rules out its matrix structure and we are left with

Xy,,z/ X Tr[sﬂ ZLSI/ER] = 0) (20)

where the last equality follows from the orthogonality of the two channels defined by ¥ z. We then conclude
that the model equation (14) effectively described two independent single-channel Kondo Hamiltonians.

5
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Role of other ions

We now finally discuss the role played by the other ions in the description of the spin-spin interaction between
the molecule and the graphene sheet. The antiferromagnetic coupling between nearest neighbor ions in the
molecule can be seen as the result of onsite Hubbard repulsion on each ion, at second order in the hopping
between ions. Going a step back, we modify the Hamiltonian as H = Hy, + H, + Hy + Hg, where H,describes
hopping between the ions in the molecule and H, the onsite Hubbard repulsion on each ion. Treating H, and
Hy on equal footing, we can perform a joint Schrieffer—Wolff transformation through S = Sy + S,and eliminate
both tunneling terms at first order. The full second order correction reads H' = %[Sv + S;, H; + Hy], where
Sy-given in equation (10) S;accounts for intramolecular transitions (see Sup. Mat. (See footnote 6)). Out of

the resulting four different terms, [Sy, Hy] results in the Kondo Hamiltonian so far discussed and [S,, H,] =

¥ im13.4)5:S:[21,22, 26]. The additional correction produces a well know term in the ¢ — J model [33] that reads

Hy = V’(Z dycusm — d3Sc,d) Sdi | + H.C., 21

St

and describes a spin mediated hopping that represents a perturbation of the Kondo Hamiltonian.

Discussion

To summarize, we have studied the interaction between graphene and a molecular magnet. We have focused in
the most stable and symmetric case, with the core of the molecule being at the center of a graphene hexagon. The
leading coupling, equation (14), shows two Kondo couplings involving the i = =+ 2 orbitals in the Iron ion
nearest to the graphene layer. The interaction with the other ions involves exchange interaction only at fourth
order in perturbation theory. This coupling could be seen as a source of instability at low temperatures. These
two Kondo systems involve different combinations of valley and sublattice indices in the graphene layer. Exactly
at the Dirac point, the vanishing density of states of graphene makes the Kondo coupling irrelevant, although
two Kondo singlets will be formed for sufficiently large values of the coupling J. Away from the Dirac point, the
Kondo coupling becomes marginally relevant, and, at the same time, an effective coupling between the two
Kondo systems will develop through the graphene electrons. These two effects are of comparable strength, and
they can lead to a rich phase diagram. The nature of the most stable phases depends on details at the atomic scale
outside the scope of this work.
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