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Abstract: Antimonene, a novel group 15 two-dimensional
material, is functionalized with a tailormade perylene bisimide
through strong van der Waals interactions. The functionaliza-
tion process leads to a significant quenching of the perylene
fluorescence, and surpasses that observed for either graphene
or black phosphorus, thus allowing straightforward character-
ization of the flakes by scanning Raman microscopy. Fur-
thermore, scanning photoelectron microscopy studies and
theoretical calculations reveal a remarkable charge-transfer
behavior, being twice that of black phosphorus. Moreover, the
excellent stability under environmental conditions of pristine
antimonene has been tackled, thus pointing towards the
spontaneous formation of a sub-nanometric oxide passivation
layer. DFT calculations revealed that the noncovalent func-
tionalization of antimonene results in a charge-transfer band
gap of 1.1 eV.

Two-dimensional (2D) materials have attracted enormous
attention during the last few years because of their out-
standing properties and applications."! Beyond gapless
graphene, other elemental 2D materials have been success-
fully synthesized, with black phosphorus (BP) being the only
semiconducting material reported so far.*”! This result
together with its excellent charge-carrier mobility and current
on/off ratios renders BP a perfect candidate for nanoelec-
tronics and nanophotonics. However, its (in)stability repre-
sents a major drawback for the development of the real
applications.*"!l In contrast, its relative in the periodic table,

antimonene, that is, a single layer of antimony, exhibits a band
gap of about 1.8-2.4 eV and an outstanding stability under
ambient conditions. Antimonene has been recently isolated
for the very first time both by mechanical exfoliation!” and
liquid-phase exfoliation™ as reported by our groups. A
number of theoretical calculations predict extraordinary
physical properties like high carrier mobility," thermal
conductivity,™® and strain-induced band transition,'®! among
others.

Therefore, antimonene appears to be a promising plat-
form for high-performance sensors,'”! double-gate MOS-
FETs,™ spintronics,"**! optoelectronic applications,**!
energy storage and conversion,” and biomedicine.”*
Recently, van der Waals and molecular beam epitaxy
(MBE) have been applied for the synthesis of antimonene
on different surfaces, thereby exhibiting good stabilities and
high electrical conductivities of up to 10* Sm™" in about 30 nm
thick flakes.”? Despite synthetic efforts, the chemistry and
therefore the molecular doping of antimonene remains
completely unexplored. In relation to that, we have recently
reported on the noncovalent functionalization of BP with
electron-poor and polarizable polycyclic aromatic molecules,
thus observing a remarkable charge-transfer behavior, and
improving the resistance of the flakes against oxygen
degradation.””?! In this context, the present work nicely
illustrates, for the first time, the noncovalent functionalization
of antimonene with a perylene bisimide (PDI; Figure 1a),
thereby showing a more pronounced charge-transfer behavior
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Figure 1. a) Structure of -antimonene (top panel) and the perylene
bisimide (PDI) molecule (bottom panel). b) AFM topographic images
showing an antimonene flake of about 10 nm of thickness. Top: flake
as deposited. Middle: same flake after the functionalization with PDI
molecules. Bottom: height histograms of the flake before (green) and
after functionalization (blue), showing an average thickness increase
of 4.1 nm. The average PDI coverage in all the studied flakes was

3.6 nm. The inset shows representative profiles corresponding to the
lines in the images. c) Scanning Raman microscopy (SRM) of the
same flake. Left: silicon intensity Raman map showing a decrease in
the 521 cm™' signal which clearly reveals the morphology of the flake.
Right: Raman intensity mapping shows the exclusive self-assembly of
the PDI on the antimonene flakes and not on the Si/SiO, substrate.
d) Mean Raman spectra (excitation at 532 nm) of the flake showing
the PDI bands as a consequence of the quenching of its fluorescence.
The correlation between the PDI v,, Raman intensities and the flake
thicknesses is highlighted in the inset.

than BP. Moreover, we have performed scanning X-ray
photoelectron microscopy experiments combined with DFT
calculations to shed light on the charge-transfer process.
Here, to investigate the noncovalent functionalization of
antimonene, we chose micromechanically exfoliated flakes
supported on SiO,/Si and gold surfaces."” Specifically, we
carried out the functionalization process by drop-casting
a THF solution (IEM) of a tailormade EDTA-PDI
(EDTA = ethylenediaminetetraacetic acid) derivative on the
exfoliated flakes, followed by a thorough washing process
after the functionalization (see the Supporting Information
for details). This family of compounds exhibits high perfor-
mance in the functionalization of several nanomaterials such
as carbon nanotubes, graphene, molybdenum disulfide
(MoS,), and BP*"*3!1 The Raman characterization of very
thin antimonene flakes, obtained by microexfoliation, is
challenging because of the very low non-resonant Raman
intensities, as recently reported by our group.'>'¥ Therefore,
fast detection of the exfoliated flakes is precluded by Raman
spectroscopy, so we have recently optimized optical micros-
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copy conditions to facilitate the identification of few-layer
antimonene flakes.”” The use of scanning probe microscopy
techniques, however, is still imperative for an accurate
determination of their thicknesses. Prior to the functionaliza-
tion process, we characterized several flakes by atomic-force
microscopy (AFM), showing thicknesses in the 2.7-15 nm
range (see Figures S1-S3 in the Supporting Information).
Interestingly, the statistical AFM characterization of all
samples after the functionalization process revealed an
average increase in the thicknesses of the flakes of about
3.6 nm because of the self-assembly of the PDI molecules on
their surfaces (Figure 1b; see Figure S4). This result is in
excellent accordance to PDI-protected BP flakes, covalent
aryl diazonium functionalization of graphene and BP, and
recent theoretical calculations on BP-protected with pery-
lene-3,4,9,10-tetracarboxylic dianhydride (PTCDA).?33:34 1¢
is worth noting that the protection of the flakes with layers of
greater than 2 nm self-assembled PDI molecules results in an
effective passivation of the outer layers from the ambient O,
and H,0.'Y Moreover, there is no apparent correlation
between flake thickness and organic covering (see Figure S4).
Optical microscopy analysis of functionalized samples
revealed an appreciable increase of the optical contrast
under white-light illumination, and increases with the thick-
ness of the PDI organic layer (see Figures S5-S8). When
scanning Raman microscopy (SRM) measurements of the
same flakes after the deposition of the PDI molecules were
performed, a significant quenching of the fluorescence was
observed, thus allowing the characterization of the PDI
spectrum with an outstanding quality. Even more appealing
was the exclusive self-assembly of the PDI molecules on the
antimonene surface (Figure 1; see Figures S9-S11), thereby
leaving the SiO, substrate free of significant traces of this
molecule. This quenching of the fluorescence allowed us to
easily image the flakes in seconds by SRM without needing to
resolve the elusive Sb peaks.’ Remarkably, the quenching of
the fluorescence is stronger than that observed for BP or even
monolayer graphene, thus suggesting a more effective inter-
action by charge transfer (see below).””* There is a correla-
tion between the PDI Raman intensities, that is, the quench-
ing of the fluorescence, and the thicknesses of the flakes when
the organic coverage is below 4.5 nm (about 10 monolayers),
as depicted in the inset of Figure 1d. Interestingly, for thicker
organic coverage, a slight increase of the background
fluorescence, accompanied by a decrease in the PDI inten-
sities, was observed. These results indicate that if the number
of PDI layers exceeds a certain value, the fluorescence of the
outer PDI layers contribute to the Raman spectrum. To shed
light on the fluorescence quenching we also studied the effect
of the excitation wavelength (namely: 785, 633 and 532 nm)
on the Raman spectra of Sb-PDI. For this experiment we used
a flake of about 50 nm in which both the signatures of
antimonene and the PDI moieties can be clearly observed,
thus confirming the quenching of the fluorescence for all the
wavelengths (see Figure S12).

Whereas for BP a slight change in its electronic properties
is expected with a negligible influence on the band gap after
functionalization,””*¥ in the case of antimonene this behavior
is still an open question. In addition, antimonene exhibits
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excellent stability against environmental degradation, but
a detailed analysis by electron energy loss spectroscopy
(EELS) revealed that the flakes present a small amount of
oxygen contribution.”! The same effect was observed by
energy dispersive spectroscopy (EDS) for flakes grown by van
der Waals epitaxy.”” To shine light on the possible presence of
oxygen on the antimonene flakes and gain knowledge on the
functionalization process, a forefront technique, namely XPS
photoelectron microscopy using synchrotron radiation on
pristine and functionalized antimonene flakes was performed
(Figure 2). This technique allowed us to obtain both spatial
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Figure 2. a) Sb 3d image for the reference sample. Letters refer to
antimonene flakes specifically studied. b) Sb 3d peak for the reference
sample, corresponding to point B in a). Numbers identify the different
components: 1 (Sb 3ds,), 2 (oxidized Sb 3d;,), and 3 (O 1s). Peaks at
higher BEs are the Sb 3d;,, components. Black dots are experimental
points and the red line is the results of fit (see the Supporting
Information). Grey lines correspond to the different components used
and the background. c) The Sb 3d image for the functionalized
sample. Letters refer to antimonene flakes specifically studied. d) Sb
3d peak for the functionalized sample, corresponding to point E in c).
The peak identification and other details are as in b). The size of
images in a) and c) are 40 x40 um.

and chemical resolution of the surface of the flakes with
outstanding precision. In particular, the XPS data on the
different flakes, deposited on gold surfaces, exhibited similar
results, thus showing the presence of an oxidation layer with
a binding energy (BE; 530.9 ¢V) larger than the value
expected for Sb,O; (530¢eV) and slightly higher than the
value expected for Sb,Os (530.8 eV). Following the same
trend, the O, peak presented a higher BE value (532.61 eV)
compared to most of the metallic oxides (531-528 eV), thus
pointing to a superficial oxidized component present only on
the outer surface and not presenting a conventional oxidation
pattern. It is worth mentioning that these flakes were
prepared several weeks before the XPS experiments and
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stored under atmospheric conditions. Accordingly, the oxida-
tion took place in the presence of oxygen, thus creating
a static passivation layer. Indeed, recent theoretical predic-
tions claim the feasibility of superficial oxidation of antimo-
nene flakes creating the so-called antimonene oxides.”
These results clearly point towards a sub-nanometric oxide
passivation layer as the origin of the environmental stability
shown by antimonene. Moreover, this oxidation could have
an influence in observed fluorescence quenching.

Figure 2 shows the Sb 3d image of the functionalized
sample prepared on gold substrates, and its corresponding
overall spectra, which is representative for all other recorded
spectra. The overall line shape is similar to that observed
within the reference sample. Again, the spectrum exhibits
a metallic-like Sb 3d contribution, which is now less intense
than the fraction of oxidized Sb (see Table S1 for BE values).
Besides the differences in intensities, an interesting aspect is
the change in separation between the metallic and the
oxidized components (see Table S1 and Figure S13).

The energy separation for the reference sample is 2.26 eV,
while the difference for the functionalized sample is 1.87 eV,
thus there is a core-level shift of about 0.4 eV, and it is induced
by the functionalization. The sign of the shift indicates that
these Sb species are oxidized with respect to metallic Sb, but
the charge transfer is less pronounced than in the oxide. These
results indicate that the functionalizing molecule acts as an
electron acceptor, which fits perfectly with the electron-
withdrawing behavior exhibited by PDI molecules on other
related 2D materials.?"*"

To complement the experimental results, the supramolec-
ular interaction of our PDI on antimonene was systematically
investigated by DFT calculations. Concretely, PDI, taking
into account the s core and the first methyl group of the
peripheral branches for reducing the computational effort,
was modeled (Figure 3; see the Supporting Information). We
also computed one peripheral branch with half of the PDI
core adsorbed on antimonene, and thus further confirmed the
parallel disposition of the PDI core with respect to the
antimonene surface (see Figure S14). The adsorption energy
of the PDI core with single-layer antimonene is found to be
—1.27 eV, which indicates a strong noncovalent interaction
(adsorption energies per molecule are defined as: E, = Epp.
soy— E@pny—Esvy, Where Epprsy), Eppr, and Ey,) stand for the
total energy of the PDI-modified antimonene, the isolated
PDI, and the isolated antimonene, respectively). The analysis

Figure 3. a) Top and b) side view of the optimized geometries of PDI
core on single-layer Sb. The electron density difference between the
PDI-antimonene and the isolated molecules and antimonene is also
shown in the side view (for an isovalue of +-0.0005 |e |A~*, blue/red
indicates higher/lower electron density, respectively).
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of the energy contributions reveals that the binding is only
due to van der Waals interactions, which is illustrated by the
fact that the contribution from the van der Waals correction
to the binding energy is —1.36 eV, that is, without this
correction PDI would be repelled farther from the antimo-
nene monolayer. In the case of double-layer antimonene, the
adsorption energy increases to —1.72 eV, which matches well
with the observed Raman behavior (Figure 1). The distance
between PDI and antimonene is 3.4 A (3.6 A in the case of
the double-layer), which is very similar to that exhibited by
the same PDI on top of monolayer BP (3.3 A; see the
Supporting Information for further details), despite the
atomic radius of Sb being significantly larger than that of
phosphorus. Interestingly, these short distances, as well as the
electron-withdrawing character of PDIs, lead to a charge
transfer from the 2D material to the PDI. For antimonene,
this charge transfer is approximately twice as large as for the
BP-PDI system, and primarily based on the contribution of
the Sb atoms in the vicinity of the oxygen atoms of PDI
(Figure 3b). Concerning the band gap of antimonene, values
of 1.8 eV for the monolayer, 0.4 eV for the double layer, and
no band gap for the bulk were predicted. These values are
different from those computed by Zhang etal.”® who,
however, obtained far too small layer distances for the bulk
compared to the experiment. The calculated bulk parameters
in this contribution agree with experiment within 1.5% (see
the Supporting Information). With respect to the functional-
ization process, inspection of the band structures and density
of states (DOSs) shows that the highest occupied band of the
PDI-functionalized antimonene sheets is formed by antimo-
nene orbitals, whereas the lowest unoccupied band is built of
PDI orbitals (see Figure S15). The HOMO-LUMO excita-
tion of PDI-functionalized antimonene sheets is thus of
charge transfer character. The antimonene/BP band struc-
tures themselves show only minor changes upon adsorption of
PDI (see the Supporting Information for details).””) However,
because of the “PDI band” forming the lowest unoccupied
band, the calculated band gap of the PDI-antimonene system
is 1.05 eV, that is, the adsorption-induced band gap change is
—0.75 eV, and in good accordance with the XPS experiments.

To further demonstrate the compatibility of this supra-
molecular approach with the preparation of devices, we
investigated whether it is possible to completely desorb the
PDI adlayer from the antimonene surface or not (Figure 4).
For this purpose we studied the stability of FL-Sb layers with
temperature. Firstly, we performed a temperature-dependent
Raman analysis of an antimonene flake of about 50 nm (see
Figure S16), thus showing that the antimonene flakes are
stable below 400 °C (both on SiO,/Si and gold substrates), and
a complete degradation takes place at about 450°C (a
temperature remarkably smaller than the bulk melting point
of ca. 630°C). Moreover, to complement our results we
performed a temperature-dependent Raman analysis of the
samples previously characterized by XPS microscopy (con-
sisting of antimonene flakes deposited on gold substrates).
The desorption of the PDI molecules is reflected in a con-
comitant decrease of the intensity of the characteristic PDI
peaks, as well as a progressive increase of the fluorescence
background, until its complete disappearance above about
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Figure 4. Thermal desorption of the PDI adlayer from the antimonene
surface characterized by means of AFM topography images measured
after heating at different temperatures, and the corresponding histo-
grams showing the decrease in the thickness of the PDI organic layer
(4.1 nm). After heating at 400°C the original value of the pristine flake
was recovered, thus confirming the complete thermal removal of the
PDI.

300°C (see Figure S17). Furthermore, we performed a con-
trolled study of desorption of the PDI by means of AFM, thus
measuring the flakes, previously characterized by optical,
Raman spectroscopy and AFM on SiO,/Si substrates, after
a controlled thermal treatment under inert atmosphere at 300,
350, and 400°C (see experimental information and Figur-
es S18-21 for details). We observed that at 300°C the PDI
molecules are partially removed, and by further increasing the
temperature to 400°C we were able to completely eliminate
the adlayer from the surface of the antimonene, thus giving
access to the pristine original surface. This result represents
a big advantage compared to BP and paves the way for the
thermal annealing of antimonene flakes in the preparation of
devices.

Finally, to explore the wvalidity of this noncovalent
functionalization, we performed the functionalization of
antimonene dispersions prepared by liquid-phase exfoliation
(LPE). For this purpose, we prepared an propan-2-ol
antimonene dispersion (0.011 mgmL ') exhibiting an average
thickness of about 8 nm and lateral dimensions below 5 pm?,
and added a 10°M solution of the PDI under magnetic
stirring (see the Supporting Information for experimental
procedure and Figures S22-S25 for details). Interestingly, we
observed a pronounced quenching of the fluorescence of
about 80 %, which is remarkably higher than that observed
for BP (ca. 66%).””" Additionally, to gain unambiguous
evidence of the charge-transfer process we used tetracyano-
quinodimethane (TCNQ), a benchmark electron-withdraw-
ing molecule which has been theoretically predicted to exert
a P-type doping with a pronounced charge transfer of 0.62 | ¢ |
I Thus, we prepared THF antimonene suspensions in an
argon-filled glovebox, added a 10~°M TCNQ solution, and
characterized the UV-vis spectra under inert conditions
before and after the functionalization process (see Fig-
ure S26). Remarkably, the almost complete formation of
TCNQ?" was observed after 2 days of reaction. It is worthy of
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aremark here that the generation of TCNQ?* usually requires
exhaustive 2 e~ reduction (bulk electrolysis) and the rigorous
exclusion of O,. This electron transfer from Sb to the TCNQ
molecule is similar to that previously observed for BP-TCNQ
hybrids.?”!

In conclusion, we have presented the noncovalent func-
tionalization of few-layer antimonene prepared both by
micromechanical and liquid-phase exfoliation with a tailor-
made PDI and TCNQ for the very first time. Scanning Raman
microscopy and statistical Raman spectroscopy revealed the
preferential supramolecular functionalization of the antimo-
nene flakes deposited on Si/SiO, substrates with a significant
quenching of the PDI fluorescence. Scanning photoelectron
microscopy and computational studies demonstrated the
nature of the strong noncovalent interaction between PDI
and antimonene as well as the significant charge transfer from
the antimonene to the PDI, and it resulted in a charge transfer
about twice as large as that observed for BP. In addition, we
have characterized the nature of the spontaneous oxide
passivation layer of pristine antimonene under environmental
conditions resulting in its excellent stability. Moreover, DFT
calculations indicate that the noncovalent functionalization of
antimonene gives rise to a charge-transfer band gap of
approximately 1.05eV and is thus a promising route for
tailoring the electronic properties of this novel group 15 2D
material.
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