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Abstract: We have studied the formation of cavities in

spherical silver nanoparticles embedded in silica, irradi-

ated with fs laser pulses that produce an intense electronic

excitation. Experimentally determined aspect ratio, i.e. the

ratio between the cavity and nanoparticle size, for hol-

low structures formed under different irradiation condi-

tions shows a very good agreement with values obtained

by means of atomistic simulations. According to the predic-

tions of the atomistic model, one can produce at will hollow

silver nanoparticles with cavities of tailored dimensions,

having an accurate control. Hence, laser irradiation can be

used to control and design the optical response by tuning

the localized surface plasmon resonances of the hollow

nanoparticles.
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1 Introduction

Metallic nanoparticles (NPs) have generated much inter-

est in recent years, due to their remarkable optical prop-

erties. The main reason for this attention is the presence

of localized surface plasmon resonances (LSPRs) [1]–[3],

which are collective oscillations of conduction band elec-

trons, and the flexibility that they offer to have an accu-

rate control on the optical properties [4]–[6]. In turn, this

opens the door to a multitude of applications such as catal-

ysis [7]–[13], biological and chemical sensing [14]–[18], bio-

logical imaging [19], photonics and energy harvesting and
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production [20]–[26], dye-sensitized solar cells [27], storage

[28], including hydrogen storage [29], [30], surface enhanced

spectroscopies [31], [32] and even for medical therapies like

cancer treatment [33], [34] or drug and gene delivery and

therapeutics [35]–[38].

Among the different nanoparticle types, hollow nano-

spheres (nanoshells) are very interesting, due to the possi-

bility of controlling their LSPR by means of the geometrical

parameters, namely, the aspect ratio (i.e. the ratio between

the inner and outer radii) [39]. Consequently, there are

numerous studies about their manufacturing by chemical

processes [27], [40]–[42] and through physical processes

such as laser ablation [43], [44]. More recently, it has been

proposed that ultrashort laser pulses can be used to fabri-

cate hollow NPs [45]–[47]. Molecular dynamics (MD) simu-

lations have becomea very useful tool to analyse the dynam-

ics of NP at the atomic scale and further understand the

process of cavity formation. Moreover, those studies have

identified the conditions required for cavity formation in

NPs: a fast, nearly adiabatic heating, followed by a swift

quenching. The former condition is easy tomeet experimen-

tally, using ultrashort laser pulses, but the latter is harder to

achieve, particularly for colloidal NPs [45].

In this work, the formation of cavities is demonstrated

experimentally by irradiating silver NPs embedded in silica

with femtosecond laser pulses that produce an intense elec-

tronic excitation. This irradiation, through heating, expands

the NPs generating inner cavities, evidenced by the changes

observed in the LSPR frequency. Simultaneously, MD sim-

ulations have been carried out to explain the mechanism

of cavity formation. In particular, the effects produced by

a single laser pulse on a silver NP depending on its size

and laser fluence, as well as the temporal evolution of the

NP’s temperature and aspect ratio, have been studied in

detail.

2 Experiment

High-purity silica glass plates (60 × 60 × 0.5 mm3) were implanted at

room temperature with 150 keV Ag ions at a fluence of 1 × 1017 cm−2,

using the 210 kV Ion implanter (Danfysik) at Campus Tecnológico e

Nuclear, Instituto Superior Técnico (Lisbon, Portugal) [48]. Ag ionswere

implanted in a shallow layer (<100 nm) near the surface. Afterwards,

the samples were cut into smaller pieces and annealed in air for an

hour, at a temperature of 600 ◦C, to induce the nucleation of silver

nanospheres (Figure 1(a)) [49], [50].

After the thermal treatment, the samples were irradiated with

ultrashort laser pulses (100 fs) for 60 min, at a frequency of 1 kHz,

and using different fluences: 24, 27 y 31 J/m2 (lower fluences were

performed as well, but no apparent changes in the optical properties

were observed). Fluence (𝜙) was calculated through the relationship

𝜙 = E∕A, where E is the energy of each pulse (in this case, E was 1.5 mJ
for the second harmonic), and A the beam area over the sample. The

diameter of the unfocused beam (15 mm)was determined by projecting

it on a graphpaper. Then,weused a lenswith a focal distance of 500 mm

to focus the laser beam, and the fluence was controlled by changing the

distance between the lens and the sample. The fluences reported in this

work correspond to distances of 200, 220 and 240 mm (beam diameters

of 9.0, 8.4 and 7.8 mm, respectively).

The irradiation experiments were conducted at CMAM (Centro

de Micro-Análisis de Materiales) [51], using a Ti:Sapphire femtosecond

laser (Spectra Physics Solstice ACE model, regenerative amplifier). The

laser emits 100 fs pulses, with a repetition rate of 1 kHz, and a wave-

length of 800 nm. The second harmonic of the laser (400 nm) was used

to match the LSPR wavelength of spherical silver NPs. Simultaneously,

the in situ optical absorption spectra of the samples were collected

using aUV-visible spectrometer (QE6500, OceanOptics Inc.), at different

times during the irradiation, to analyse the changes in the optical

response as a function of time and fluence (Figure 1(b)).

3 Molecular dynamics

To better understand the experimental results, the irra-

diation process was simulated using molecular dynam-

ics (MD), with the LAMMPS code [52]. MD using classical

force fields cannot address the relevant electronic processes

Figure 1: Sample fabrication and in situ measurements. (a) Schematics for the manufacturing process of silver NPs in silica: a silica glass substrate

is implanted with 150 keV Ag+ ions in a shallow layer (<100 nm) near the surface, and then subsequent thermal annealing process induces the

nucleation of silver nanospheres. (b) Scheme of the experimental setup for the formation of cavities in silver NPs. The sample is irradiated by 400 nm

laser pulses and the irradiation fluence is regulated by shifting the sample position with respect to the optical lens. The in situ optical absorption

spectra are collected from the sample simultaneously to the irradiation process.
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involved, such as, plasmon formation, plasmon decay or

electron–phonon coupling, but, due to the difference in

timescales between the energy transfer from the plasmon to

the atomic system and the atomic lattice evolution, it is pos-

sible to obtain meaningful results decoupling both effects.

Namely, it is assumed that the energy is transferred from

the laser beam to the electron system in a very short time

(∼100 fs), and then the energy is transferred to the atomic

lattice in a timescale of picoseconds, ignoring the details of

energy transfer from the electrons to the atoms, as we have

donewith satisfactory results in recent works [45], [53]. This

approach allows the use of a simple atomistic model based

on classical force fields to study the formation of cavities in

silver NPs.

A variety of force fields to represent the interaction

between different types of atoms was used. The interaction

between the atoms in silica (i.e. Si–Si, Si–O and O–O inter-

actions) was described via a Tersoff potential [54] as its ther-

mal conduction is in good agreement with previous experi-

mental results [55]. On the other hand, an EAMpotentialwas

used for the Ag–Ag interaction [56]. Although this potential

was made for systems at room temperature (300 K), sub-

sequent works have studied its use for cases where silver

nanoparticles reach the melting temperature, comparing it

with experimental results and literature, reaching a good

agreement [57], [58]. Moreover, there are works that use

it for melting and coalescence studies with other metals,

mixing silver with palladium [59] or copper [60]. Finally, a

Lennard-Jones (LJ) potential to simulate the interaction of

themetallic NPwith the silica (Ag–Si andAg–O interactions)

[61].

The initial statewas defined as a box of crystalline silica

with a cristobalite structure of 30 × 30 × 30 nm3. Once the

lattice was formed, the box was subjected to various ther-

mal treatments (raising its temperature up to 7000 K and

decreasing it in steps of 1000 K every 25 ps until 300 K) until

a state of amorphization at room temperature is reached

[62]. Next, around 34,000 atoms were extracted from a

spherical region in the centre, preserving the stoichiometry

of the system, and the hole was filled with Ag atoms until a

spherical crystalline Ag NP of 5 nm radius with more than

30,000 atoms was formed. A small gap of 0.1 nm was left

between the Ag atoms and the silica, so that, after a slight

annealing (raising the system temperature up to 600 K in

25 ps, maintaining it for another 25 ps, decreasing it again to

300 K in 25 ps and maintaining it for 25 ps), as already car-

ried out in previous works [63], the sample was completely

relaxed. The dimensions of the system have been chosen in

such a way that they lie between those of irradiated NPs,

allowing the formation of cavities of appreciable size to be

analysed, but optimizing computational resources.

Once the systemwas relaxed (at 300 K), a series of simu-

lations, increasing linearly the temperature of the silver NP

for 7 ps in order to roughly reproduce the electron–phonon

coupling [45], up to a desired temperature were performed,

covering a wide range of temperatures from 1000 to 5000 K.

Immediately, after this temperature was reached, the sys-

tem was allowed to relax naturally, in the microcanonical

ensemble (NVE). The silica surrounding the NP removes

heat from it, resulting in an effective cooling-down of the

NP. Themaximum temperature reached by the nanoparticle

depends on the laser fluence and its size, i.e. the larger

the laser fluence, the higher the temperature it reaches,

whereas for larger particles, where their absorption cross

section is dominated by scattering, the temperature reached

will be lower. Finally, the results obtained with these simu-

lations were compared with the optical results.

4 Results and discussion

The evolution of the optical absorption spectra for the

sample irradiated with a fluence of 31 J/m2 is depicted in

Figure 2(a) (the spectral changes for the other fluences are

similar). It is clear from these data that the LSPR of some

of the silver NPs, initially around 410 nm, is considerably

redshifted upon irradiation (up to 550 nm) and, in addi-

tion, the plasmon peak widens significatively. However, the

overall plasmon intensity does not decrease, which suggests

that there is not significant disappearance of NPs, just struc-

tural modification. For a more quantitative assessment, the

experimental spectra were fitted with the MieLab tool [64]

and following the procedure that we have described previ-

ously [65]. For each laser fluence, all the relevant geomet-

rical parameters were extracted from this fit, namely: the

cavity radius and the average and standard deviation for NP

size (Figure 2(b)). Finally, the aspect ratio can be calculated

as a function of irradiation time (Figure 3(a)).

Now, the initial properties of the irradiated samples

must be considered to understand the experimental results.

As described elsewhere [63], NPs fabricated by ion implan-

tation present a large size dispersion. Particles with dif-

ferent sizes have dissimilar absorption cross sections and

stability and, hence, their interaction with the laser beam

is not equal. For instance, optical absorption is dominant

for smaller NPs, whereas scattering is more important for

larger ones. Thus, a complex kinetics with at least three

different behaviours is expected. First, very small particles

(radii below 2–3 nm) are probably disintegrated by the laser

pulse and its atoms can later regroup to form a newNP or be
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(a)

(b)

Figure 2: Optical absorption spectra and particle sizes. (a) Time

evolution of the optical absorption spectra for silica samples containing

silver NPs, irradiated with 400 nm fs laser pulses with a frequency of

1 kHz and a fluence of 31 J/m2. (b) Nanoparticle (blue) and cavity (red)

radii, as a function of time, for a fluence of 31 J/m2. Error bars in panel

(b) represent the standard deviation of the distribution used to represent

the cavity and particle radii. Standard deviation of NP radius appears to

reduce over time, which could be due to Ostwald ripening [66] (smaller

nanoparticles are disintegrated by the laser pulses, being absorbed by

larger nanoparticles).

absorbed by larger ones (Ostwald ripening [66]). Second, the

larger particles (R > 20 nm) are barely affected by the laser

pulses (in the irradiation regime used in this work). Finally,

particles with intermediate sizes are expanded by the laser

pulse, forming cavities. The combined effect of these three

types of behaviour can be observed in Figure 2(a), where

some NPs form cavities, red shifting their plasmon wave-

length, whereas others remain as solid nanospheres, and,

consequently, their plasmon band is not affected by the

irradiation. After 1 h of irradiation, the absorption spectra

reached a relatively stable state, suggesting that some of

the particles have been modified significantly (i.e. a cavity

was produced) and no longer interact with the laser beam,

whereas other particles are too stable and, hence, are not

affected by the laser pulses.

(a)

(b)

Figure 3: Determination of aspect ratio. (a) Average aspect ratio of the

hollow silver NPs, as a function of fluence and time, obtained from a fit of

the optical absorption spectra. (b) Aspect ratio as a function of the energy

absorbed per Ag atom from the experimental results (blue, red and

green; after irradiating the samples for 60 min) and those obtained by

MD simulations (black), showing values between 0.45 and 0.60. For the

simulations, a discontinuity is observed when the energy per atom

reaches 0.5 eV. The horizontal error bars show the energy absorbed per

atom of larger NP (left), which has a dominant scattering term, and of

smaller NP (right), whose absorption term is larger than the scattering

term.

To understand the observations, a comparison between

the optical results and those obtained with the atomistic

model has been conducted (Figure 3(b)). The comparison

provides an in-depthdetailed explanation on theunderlying

mechanisms for the formation of hollow NPs. Due to the

NPs’ size dispersion, the energy absorbed per atom differs

considerably for the larger and smaller NPs and has been

represented as error bars in Figure 3(a) (the symbols rep-

resent the energy absorbed by the NPs with an average

size). Scattering dominates over absorption when the NPs

are larger, so the energy absorbed per atom will be lower

and the formation of cavities may be due to a cumulative

process of energy, produced by several pulses. On the other

hand, for smaller NPs, the absorption is dominant, so that
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they will absorb more energy per atom, and a single pulse

could be enough to form a cavity. For instance, MD data

give the temporal evolution of the temperature of the sil-

ver NP. As can be observed (Figure 4), the temperature of

the NP drops following an exponential decay, with time

constants ranging from 25 ps (in the simulations where the

NP acquires a higher temperature) to 35 ps. An interesting

observation is the appearance of a small plateau in the

temperature evolution, in coincidencewith the formation of

the cavity. Following this plateau, a small peak also appears.

These effects seem to be related to the cavity formation,

where atoms with high kinetic energy move radially, leav-

ing an empty space inside. During this process, there is

hardly any energy transfer from the silver atoms to the

surrounding silica, which flattens the temperature curve.

This plateau appears for lower fluences, when the initial

temperature after heating is relatively low (between 1750

and 2000 K), but when the maximum temperature reached

by the NP is higher, the cavity is formed earlier and at a

higher temperature. Hence, the energy transfer from the

NP to the silica matrix is larger, making that plateau almost

negligible.

To compare the optical data with MD simulations, the

total energy deposited per atom was calculated for both

cases. For MD simulations, the energy deposited during the

7 ps of temperature increasewas determined anddividedby

the total number of Ag atoms in the NP. In the experimental

case, the absorption cross sectionwas obtainedwithMieLab

[64], using the size of the NPs obtained from the fit. Then,

the energy absorbed by the NP (Eabs) can be obtained using

the absorption cross section (𝜎abs), the laser fluence (F), the

Figure 4: Time evolution of silver NP temperature when the temperature

is increased to 1700 K, i.e. 0.47 eV/at, (blue) and when the temperature is

increased to 1800 K, i.e. 0.50 eV/at (red). Both present similar decay time

constants, but in the case of 1800 K, a plateau appears that corresponds

to the moment of cavity formation (∼20 ps).

nanoparticle’s volume (V), and the atomic density of silver

(𝜌): Eabs =
(
F ⋅ 𝜎abs

)
∕(V ⋅ 𝜌).

MD simulations show the temporal evolution of the

formation of the inner cavity, as can be observed in Figure 5.

Thus, after the initial laser pulse, the NP expands slightly,

whereas its temperature increases to its maximum at 7 ps,

producing a large mobilization of the NP atoms (firsts two

snapshots in Figure 5(a)). However, the appearance of the

cavity does not occur until several picoseconds (∼20 ps)
have passed (third snapshot in Figure 5(a)), during which

the NP expands rapidly and then transfers its energy to the

silica atoms, stabilizing the size of the cavity (latest snap-

shot in Figure 5(a)). From this time onwards, the cavity size

(a)

(b)

Figure 5: Formation of hollow nanoparticles. (a) Snapshots of a silver NP

and the corresponding cavity at different times, showing relevant stages:

the initial state (0 ps); moment of expansion that matches the maximum

temperature reached by the NP (1800 K; 7 ps); the beginning of cavity

formation (20 ps and 25 ps); and, when the stationary stage is reached,

the NP shape and cavity size barely change (60 ps and 100 ps).

The snapshots were generated with Ovito visualization software [67].

(b) Temporal evolution of the radius of the same silver NP and the

corresponding cavity. It is observed how in the initial moments the NP

expands slightly (from 5.34 nm to 5.55 nm). After approximately 20 ps

from the onset, a rapid formation of the cavity begins. Finally, the cavity

reaches a size that barely varies over time (∼3 nm) with a sphere radius
of 5.63 nm.



1154 — F. Sánchez-Pérez et al.: Formation of hollow silver nanoparticles under irradiation with fs laser pulses

increases very slightly until it reaches a stable state, around

100 ps (Figure 5(b)). Furthermore, MD simulations show a

clear threshold for cavity formation, around 0.5 eV/atom

(Figure 3(b)). Moreover, they are in very good agreement

with the experimental data (Figure 3(b)), showing that,

regardless of the amount of energy absorbed by the NPs,

hollow NPs always have similar aspect ratios, between 0.45

and 0.60.

In the following, the mechanism of cavity formation

will be discussed. It is noticeable that for NPs embedded

in silica, the cavity formation during the expansion is not

reversed, as can occur when the NP is in vacuum [45]. In

the case of vacuum, NPs can expandwithout resistance, and

afterwards they can contract again since there is nomedium

that prevents these displacements. However, when the NP

is embedded in a solid matrix such as silica, this material

limits considerably its expansion (Figure 5), but, despite

this limitation, the silica seems to interact with the outer-

most layers of silver atoms and prevents the cavity collapse

returning to the initial solid sphere. These conclusions have

arisen from MD simulations. For other particle sizes, espe-

cially large ones, where the scattering term predominates

over absorption, the cavity formationmechanismmight not

be produced by a single pulse, but from the accumulation of

energy, deposited by several successive pulses. This effect

could be analysed in the future, by irradiating samples con-

taining NPs with a narrow size dispersion and performing

MD simulations of large ones.

5 Conclusions

It has been experimentally observed that the irradiation of

silver NPs under intense electronic excitation with fs laser

pulses produces cavities inside them, producing a redshift

of the LSPR band. These results were compared with MD

simulations that yield comparable results, indicating that

the proposed atomistic model is a powerful tool to predict

the evolution of cavity formation in silver NPs embedded

in silica. This model provides additional insight into the

temporal evolution of the formation of the cavities, which

start with an expansion of the NP induced by the severe

atom motion preferentially outwards in radial direction.

This leads to the formation of a cavity and a final stabiliza-

tion of the system due to the fast temperature quenching.

In addition, it provides information on how temperature

evolves over time, decaying exponentially with time con-

stants of the order of 30 ps. It has been observed that silica

plays a key role, constraining further expansion of the NP

but later helping to stabilize the cavity. This study shows

an alternative methodology to produce hollow NPs with

accurate size-control for use in a wide range of industrial

and technological applications. Moreover, the results shown

in this work might be extended to other metals, since it

should be relatively simple to use the same route to create

cavities in materials like gold, palladium or platinum, or

using different ceramic host matrices.
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