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Impact of electrostatic fields in layered crystalline BCS superconductors
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Motivated by recent experiments reporting the suppression of the critical current in superconducting Dayem
bridges by the application of strong electrostatic fields, in this paper we study the impact on the superconducting
gap of charge redistribution in response to an applied electric field in thin crystalline metals. By numerically
solving the BCS gap equation and the Poisson equation in a fully self-consistent way, we find that the gap
becomes sensitive to the applied electric field when the size of the gap becomes an order of magnitude larger
than the average level spacing of the spectrum in the normal state. In this case, the gap shows sudden rises
and falls that are compatible with surface modifications of the local density of states. The effect is washed out
by increasing the pairing strength toward the weak-to-moderate coupling limit or by introduction of a weak
smearing in the density of states that effectively mimics a thicker sample and a weakly disordered system.
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I. INTRODUCTION

A thorough understanding of the impact of electrostatic
fields on superconductivity is of great relevance from a fun-
damental point of view, as it may represent an easy-access
active knob to control fundamental quantum states of matter
and open the way to a number of technological applica-
tions. Electrostatic fields have been successfully employed
in systems where the carrier density is low, such as thin
crystalline films [1–4], band insulators [5–7], interfaces [8],
semiconducting, and low-density two-dimensional materials
[9–12], or to tune the proximity effect [13–15]. In most cases,
the electrostatic field controls the carrier density by shifting
the active bands of the material. A low electronic density
yields poor screening and, in sufficiently thin structures, the
electric field fully penetrates. In these cases, the electrostatic
force squeezes the electron gas and effectively reduces the
thickness of the material by adding the electrostatic potential
to the confining potential. The superconducting properties
in thin samples are known to be strongly thickness depen-
dent. Average gap and critical temperature have been studied
in nanowires [16–19], nanofilms [20–24], and nanograins
[25–30]. Effects of the confinement typically appear as shape
resonances, critical field [17] and critical current oscillations
[18], and strong dependence of the longitudinal coherence
length on the thickness [19], that all arise when progressively
depleting subbands. In contrast, metals characterized by a
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high carrier density screen very well the electrostatic field
within a few angstroms from the surface [31–34] and the
residual skin contribution is typically negligible at the level of
carrier density and density of states (DoS). Superconductors
realized in diffusive metals are typically hardly affected by
electrostatic fields.

Recently, a series of experiments conducted on metallic
superconducting Dayem nanobridges have shown that a strong
electric field, generated by a high voltage applied on a side
gate, is able to switch the critical current Ic of the Dayem
bridge off in a reversible ambipolar way [35–39]. Although a
certain material dependence is observed, with a pronounced
effect in Nb, Va, Ti, the effect seams to be relatively gen-
eral, as it occurs in Al-Cu-Al proximity Josephson junctions
[40] and in Al Dayem bridges [41]. Possible leakage currents
and related overheating effects [42–44] have been minimized
by constructing suspended nanobridges [45]. Measurement
of the switching current distribution shows the presence of
very strong gate-induced phase fluctuations [46]. Theoretical
attempts to explain the origin of the observed field effect
suggested a surface orbital polarization [41,47,48] and a pos-
sible Schwinger effect [49]. These findings are yet to be
understood in the usual framework of the BCS theory and
represent a challenge from a fundamental point of view, whose
solution may reveal great technological interest. Although the
observed phenomenology involves diffusive polycrystalline
metals, it offers the opportunity to study the impact of an
electric field in systems at the boundary between low-density
crystalline materials and diffusive metals.

In this paper, we address the problem of gate-controlling
superconductivity in thin metallic clean systems, consisting of
a crystal composed by N layers and characterized by a large
carrier density, large DoS at the Fermi level, albeit still with
a well-defined notion of discreteness. Rather then studying
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the effect of variation of the carrier density, we focus on
the impact of a redistribution of charge in response to an
applied electric field by choosing an antisymmetric profile of
the potential in a capacitorlike configuration. In a particle-hole
symmetric spectrum, this guarantees only the bipolar part of
the effect is described, leaving aside global carrier density
modifications. We numerically solve the fully self-consistent
gap equation and Poisson electrostatic equation describing
simultaneous condensation of a superconducting gap and
screening of the applied field within the BCS theory. The
screening length is only slightly increased from its metallic
counterpart, in agreement with random-phase approximation
results first described by Anderson [50] and Thouless [51],
that predict a correction of order (�/EF )2 [33], with � the
superconducting gap and EF the Fermi energy [52].

To enhance the responsiveness of the system, we choose as
the basic system a tight-binding model in the cubic lattice that
yields a particle-hole symmetric normal-state spectrum, but
results are qualitatively confirmed with an in-plane triangular
lattice. We find that for a small relative dielectric constant,
relatively large system size, and strong superconducting pair-
ing, the gap is essentially insensitive to the applied field. In
turn, by reducing the pairing strength, we observe an increased
sensitivity to the applied field, with the gap showing sudden
rises and falls as the applied voltage is increased.

In agreement with previous studies on superconducting
nanograins [25–30], the relevant quantity that controls the
behavior of the system is the ratio between the average level
spacing in the normal state and the gap. Besides the coherence
length and the Fermi wavelength, a third length scale can
be defined, as the size of the system for which the average
level spacing is equal to the gap [30]. We find that when
the level spacing is about one order of magnitude smaller
than the gap, a condition typical of large nanograins, the
system becomes sensitive to DoS modification induced by the
screened potential. The latter adds to the confining potential
and plays the role of a layer chemical potential. Although the
exponentially decaying profile significantly modifies only the
outermost few layers, our results show that it can result in
sizable bulk effects. For a perfectly clean crystalline structure,
the entire DoS spanning the whole bandwidth is necessary to
account for the observed behavior. In turn, the introduction of
a weak energy smearing in the DoS washes out the effect and
the gap follows mainly the DoS at the Fermi level. Indeed, a
weak smearing emulates the effect of weak disorder and an
increased thickness, as it eliminates accidental degeneracies,
smoothens the DoS profile, and cuts van Hove singularities.

Our results apply to clean large grains and granular sys-
tems in the weak-coupling limit and show how an evolution
from a clean to a weakly disordered system effectively takes
place. These results are expected to be significant for gran-
ular systems of layered materials and thin crystalline metals
and predicts a certain degree of control of superconductivity
through an applied electrostatic field.

II. MEAN-FIELD BCS WITH SCREENING

We consider a system composed by N layers, as depicted
in Fig. 1, each described by a spin-degenerate microscopic
tight-binding model. For simplicity, we assume a single or-
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FIG. 1. (a) Schematics of the system composed by N layers. The
electric field is applied along the out-of-plane direction and is mod-
eled by fixing the electrostatic potential at the i = 0 and i = N + 1
layers. (b) Diagrammatic form of the Poisson equation and the gap
equation.

bital per unit cell, with nearest-neighbor hopping t , that results
in a dispersion εk, with k in-plane momentum. Interlayer
nearest-neighbor hopping is described by the same hopping
t . Electrons interact via a purely local two-body attraction
described by a Hubbard term with strength U that acts as a
pairing interaction. In addition, we apply an external electric
field Eg along the out-of-plane z direction via a side gate.
The electric field is screened by the electron gas and the full
electric field Ez

i can be introduced that is described via an
electrostatic energy potential φi, such that Ez

i+1 = −(φi+1 −
φi )/ae, with a the lattice constant and e the electric charge.
The full Hamiltonian then reads

H =
∑
k,i,s

(εk − φi )c
†
k,i,sck,i,s − t

∑
i,s

(c†
k,i+1,sck,i,s + H.c.)

− U

Nk

∑
k,k′,i

c†
k,i,↑c†

−k,i,↓c−k′,i,↓ck′,i,↑ + VC, (1)

where VC is the Coulomb interaction. The latter is crucial
to correctly describe screening of the applied field. Its con-
tinuum form in Fourier transform is given by VC (q, qz ) =
4πe2/(ε(q2 + q2

z )), with ε the dielectric coupling constant.
The momentum transfer (q, qz ) is restricted to nonzero value
to account for the background positive charge. We separate the
in-plane and out-of-plane Coulomb interactions by singling
out the q = 0, qz �= 0 term, so that the Coulomb interaction
reads

VC = 1

2

∫
dzdz′n(z)Veff (z − z′)n(z′), (2)

with Veff (z − z′) = 1
L

∑
qz �=0 eiqz (z−z′ )4πe2/(εq2

z ), n(zi) =∑
k,s c†

k,i,sck,i,s, and we neglect the residual interaction.
Standard decoupling of Eq. (2) gives rise to the Poisson
equation. By noticing that q2

z is the eigenvalue of the
Laplacian in 1D, we directly write a discrete version of the
Poisson equation in 1D as

−φi+1 − φi−1 + 2φi = 4πe2

εa
[ni − n0], (3)

which ensures charge conservation locally on each layer.
The rest of the Hamiltonian is decoupled in the Cooper

channel at the mean-field level by defining a local layer depen-
dent gap, �i = − U

Nk

∑
k〈c−k,i,↓ck,i,↑〉. The Bogoliubov–de
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Gennes (BdG) tight-binding Hamiltonian is written as

H =
∑
k,i j

hi j (k)c†
k,i,sck, j,s + �ic

†
k,i,↑c†

−k,i,↓ + H.c., (4)

with hi j (k) = [εk − φi]δi j − t (δi+1, j + δi, j+1) and the chemi-
cal potential has been absorbed in the dispersion. The gap and
the electron density are then written as

ni = 2

Nk

∑
k

v2
i (k), �i = U

Nk

∑
k

ui(k)vi(k). (5)

where the ui(k) and vi(k) are the particle and hole parts of the
eigenvectors at layer i of the BdG Hamiltonian Eq. (4) and Nk

is the number of k points in the Brillouin zone (BZ).
The equation for the gap and the density Eqs. (5) are solved

iteratively together with the Poisson Eq. (3). For simplicity,
we assume to insert the layered system in a capacitorlike
structure that fixes the value of the gate voltage to be opposite
on the two sides of the system. A uniform gap �(0) and a linear
potential φ

(0)
i = (2i/N − 1)φg are assigned at the first step and

the charge density and the gap are recursively updated. The
potential φi is obtained via inversion of the Poisson Eq. (3)
and by imposing a fixed boundary condition at the two most
external layers φ0 = −φN+1 = φg. The mean density n0 is
kept fixed at half filling and the chemical potential is updated
to keep the half-filling condition at every step. Convergence
is achieved within a threshold error smaller than 10−5 of a
chi-squared error function for the three quantities ni, �i, φi.
By increasing the gate in a discretized way, convergence speed
highly increases, using as guesses for the gap, density, and
potential those self-consistently obtained at a smaller value of
the gate potential.

III. DENSITY OF STATES AND SCREENING

We assume the in-plane system to be described by a square
lattice, so the dispersion reads

εk = −2t[cos(kx ) + cos(ky)]. (6)

At half filling, the chemical potential is μ = 0. For a structure
composed by a few layers, some concerns may arise from the
half-filling van Hove singularity that characterizes the one-
layer DoS. Strictly speaking, if N is odd, a smeared van Hove
singularity still appears at half filling, whereas for N even,
it is shifted at positive and negative energies by interlayer
tunneling. To avoid peaks in the DoS at the Fermi level, we
always choose an even number of layers.

We measure the strength of the Hubbard attraction U in
units of the hopping energy t and group the lattice spacing
a and the dielectric constant ε in the energy scale e2/(aε).
Setting a = 1 Å, we define our Rydberg as Ry = e2/(ε0a) =
18.05 eV ≡ 18.05 t . This way, the only free parameters in the
system are the number of layers N , the attraction strength U ,
the number Nk = NxNy of k points in the BZ, and the relative
dielectric constant εr . The smaller the dielectric constant εr ,
the stronger the screening.

In Fig. 2(a), we show a histogram of the multiplicity of the
eigenvalues of a Nx = Ny = 100 grid in momentum space, for
a system constituted by N = 20 layers. The histogram tends to
the typical DoS of a 3D cubic lattice once a smearing in energy

FIG. 2. (a) Histogram of the eigenvalues multiplicity (total den-
sity of states) in absence of applied gate. Width of the histogram
bin w/t = 2 × 10−5. (b) Profile of the self-consistent potential for
different values of the relative dielectric constant εr = 10, 20, 50.

is assumed. Deviations due to finite-size effects both in plane
and out of plane are evident and N = 20 peaks reminiscent of
the original van Hove singularities are still present.

In Fig. 2(b), we show the self-consistent potential normal-
ized to its maximum strength for values of the applied gate
0 < φg < 5t , for three different values of the relative dielectric
constant εr = 10, 20, 50. The field is screened very well by
the metal and an overall exponential decay is recognized. In
addition, oscillations of the charge on the scale of the screen-
ing length are present, indicating a local increase/decrease of
the layer chemical potential φi in the bulk of the slab. The
charge distribution screens the external field via charge accu-
mulation at the outermost layers. The latter overshoots the one
necessary to screen the field and a series of alternating electric
dipoles on the scale of the screening lengths are generated to
compensate local overshooting.

IV. SIMULATIONS

We now present the results of full numerical calculations.
As pointed out in Sec. I, we expect no effect of the applied
gate for a large system, characterized by strong screening
and a relatively strong pairing, within the weak coupling
limit. We confirm this expectation for a system composed
by N = 30 layers, pairing strength U = t , relative dielectric
constant εr = 10, and Nx = Ny = 100 points in momentum
space. The results of the simulations are shown in Fig. 3. The
self-consistent gap and potential are shown in Figs. 3(a) and
3(c), respectively. The gap is mostly uniform through the slab
for all values of the applied electric field. Small oscillations
on the scale of the lattice constant appear on top of the av-
erage value. For strong fields, the gap in the outermost layer
approaches zero at φg = 24 t . This arises because of complete
charge saturation (depletion) in the outermost layer [shown in
Fig. 3(d)] and the absence of available particle (hole) states
locally suppresses the gap.

A. Average gap varying N and εr

We now study the impact of the applied field on the gap for
samples with different thicknesses N = 30, 20, 10 for U = t .
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FIG. 3. Results of imulations for a strong pairing U = t for
a thick slab with N = 30. (a) Color plot of the local gap versus
layer iN and applied gate voltage φg. (b) Section of (a) at φg = 24 t
showing gap suppression in the outermost layers. (c) Value of the
self-consistent charge density versus the layer iN and the applied gate,
showing charge depletion in the outermost layers. (d) Self-consistent
charge density at φg = 24 t showing full depletion at the outermost
layer.

Results are shown in Fig. 4(a). The gap at zero applied gate
voltage is not a monotonic function of the sample thickness
and shows well-known quantum oscillations. The dependence
on the applied gate is very smooth for N = 20, 30 and the gap
shows robustness to the applied electric field. For N = 10, a
sizable and smooth modulation of the gap is observed. We
then fix the slab thickness to N = 20 and study the depen-
dence of the layer-averaged gap � = ∑

i �i/N on the applied
field for three values of the dielectric constant εr = 10, 20, 50.
Results are shown in Fig. 4(b). By increasing the value of
εr , the gap shows an average smooth linear decrease with
the applied gate that seems to saturate for higher values of

U = t(a) (b)
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FIG. 4. Average gap � versus applied gate φg for U = t varying
(a) the number of layers N = 10, 20, 30 for εr = 10 and (b) the
relative dielectric constant εr = 10, 20, 50 for N = 20. In-plane grid
with Nx = Ny = 100.
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FIG. 5. (a) Normalized average gap versus applied gate voltage
φg for different values of the pairing strength U/t = 1, 0.8, 0.6 for
εr = 10. (b) Gap calculated through Eq. (7) with the density of states
ν(E ) resulting from the self-consistent potential. Fixed parameters
are N = 20 and Nx = Ny = 100. The values of the gap at zero voltage
are 103�0/t = 7, 1.7, 0.22 for U/t = 1, 0.8, 0.6, respectively.

εr , accompanied by fast irregular fluctuations on top of the
linear decrease. The analysis is repeated for U = 0.8 t (results
not shown). The average gap becomes more sensitive to the
applied gate and strongly nonmonotonic rises and falls appear
in correspondence with the smooth variations observed for
U = t .

B. Average gap varying U

We now study the gap versus gate voltage curve varying U .
The zero voltage gap clearly diminishes by decreasing U , so
we normalize the curves with their zero voltage value �0 =
�(φg = 0). In Fig. 5(a), we show the results for εr = 10.
We see that by decreasing U , the effect of the gate becomes
more and more pronounced. For U = 0.6 at φg 	 1.5 t , the
gap drops to zero after a 50% increase and it stays zero
apart from very sharp and sudden revivals. For the chosen
value εr = 10, the field penetrates only for a few layers. The
weak modulation of the gap observed for large U is strongly
amplified for smaller U . The analysis is repeated for εr = 50
(results not shown) and the dependence on the gate voltage
becomes more and more frustrated. We observe again that the
small fluctuations appearing in the U = t curves are strongly
amplified for smaller U , suggesting a common DoS origin.

V. GAP FROM DOS

The analysis so far presented shows that a strong sensitivity
to the gate appears when reducing the pairing strength U .
We point out that in all simulations a smooth convergence
of the self-consistent calculation is observed at every step,
ruling out numerical instability. The BCS theory predicts that
all properties of the superconducting gap are determined by
the DoS of the system. The latter is typically assumed to be
uniform over a large range of energies where the pairing is
active and approximated with its value at the Fermi level.
Clearly, this approximation fails if the DoS suffers strong
modifications close to the Fermi level due to confinement,
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as shown in Fig. 2(a), where the DoS at the Fermi level is
ill-defined.

We then calculate the gap that results assuming the effect
of the electric field comes solely by the screened potential φi.
This is done by taking the self-consistently screened potential
for every value of the applied gate voltage, calculating the
DoS ν(E ) in the normal phase, and self-consistently solving
for the gap via the BCS gap equation

1 = U
∫

dE
ν(E )

2
√

E2 + �2
(7)

by varying only U . The result for εr = 10 is shown in
Fig. 5(b): There is a good similarity between the curves shown
in Fig. 5(a), showing how the unexpected behavior of the gap
can be understood in terms of the full DoS and its readjust-
ment with the screened potential. At the same time, we notice
that the dependence on the field is smoother in the curve in
Fig. 5(b): Although peaks and dips appear in the same ranges
of gate voltage, a suppression of the gap is never observed.
We ascribe these discrepancies to the fact that the finite size
of the system sets a lower energy scale, that is given by the
average level spacing of the spectrum. When the gap is much
larger than the average level spacing, Eq. (7) is expected to be
highly predictive. In the present case, we find a level spacing
on the order of 3.5 × 10−5t in an energy window of 0.1 t
around the Fermi energy. In turn, the gap at zero voltage is
�0/t = 2.2 × 10−4 for U = 0.6t , so the gap is just an order
of magnitude larger than the average level spacing. The situ-
ation is analogous to the case of superconducting nanograins
[25–30] previously studied in literature.

It is clear that finite-size effects, in particular, the finite
thickness, are at the origin of the observed sensitivity to the
applied gate voltage for weaker value of U . Indeed, by reduc-
ing U , we reduce the ratio between the gap and the average
level spacing. We can mimic a thicker system and a small
amount of local disorder by smearing the DoS on a small en-
ergy window. We then convolve the DoS with a smoothening
distribution of width 0.03t and obtain a coarse-grained DoS
that effectively describes a metal characterized by moderate
disorder and a thicker size. The result is shown in Fig. 6(a),
where reminiscences of van Hove singularities are still visible.
The DoS at the Fermi level is now a meaningful quantity and
it is shown in Fig. 6(b) for three values of εr = 10, 20, 50.
We can then calculate the self-consistent gap via numerically
integrating Eq. (7) for U = 0.6t and εr = 50. We see that the
gap closely follows the behavior of the DoS at the Fermi level.

These results reliably predict a modulation of the gap in
a clean metal via an external electric field that penetrates
sufficiently in the system. At the origin is the finite size of
the system that yields a finite average level spacing. When
the latter is not much smaller than the gap, a condition that
manifests when the pairing U is reduced, a high sensitivity on
the applied gate voltage appears. The introduction of a weak
smearing in the DoS does not qualitatively change the results
that also apply to thin weakly disordered metal. Furthermore,
comparison of Fig. 6(c) with Fig. 4(b) for εr = 50 shows how
the gap versus gate voltage for small U and moderate energy
smearing is compatible with the gap dependence at large U
without energy smearing. This shows how a strong gap can

FIG. 6. (a) Density of states versus energy after a smearing with
broadening 0.03t for a system with N = 20 layers and εr = 50 at
zero applied field. Inset: Zoom on a small energy window around
the Fermi level at E = 0. (b) DoS at the Fermi level as a function of
the applied gate voltage for εr = 10, 20, 50. (c) Gap resulting from
solution of Eq. (7) for εr = 50 and U = 0.6t .

tolerate a slight readjustment of the density in response to an
applied electric field.

VI. TRIANGULAR LATTICE

The results presented show that the behavior of the system
is totally due to modification of the DoS induced by the
gate voltage, that acts as a confining potential. The effect is
more pronounced for systems in which the ratio between the
average level spacing and the gap is not too smaller than one.
The observations are qualitatively confirmed by changing the
in-plane lattice model. It is well known that the square lattice
at half filling represents a somewhat peculiar case, with van
Hove singularities close to the Fermi level. In Fig. 7(a), we
show the results of the simulation for an in-plane triangular
lattice. The electric field is screened in few lattice constants,

U = 0.8 t
U = 0.6 t
U = 0.5 t
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FIG. 7. (a) Gap as a function of the applied gate potential for
an in-plane triangular tight-binding model characterized by N =
20, εr = 10, and Nx = Ny = 100 for different values of the pairing
U/t = 0.8, 0.6, 0.5. (b) Same as (a) with the gap is calculated via
Eq. (7).
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depending on the relative dielectric constant εr . Contrary to
the case of a square lattice, whose spectrum is particle-hole
symmetric with respect to the half-filling chemical potential,
the triangular lattice shows a different response for positive
and negative applied electric field, confirming the expectation
that a DoS-mediated mechanism does not produce, in gen-
eral, an ambipolar effect. Fluctuations of the gap are seen
for reduced strengths of the pairing U , confirming the results
obtained for the square lattice. The exponential dependence
of the gap on the DoS enhances weak variations of the latter
when reducing the pairing strength U .

The analysis is repeated by calculating the gap via Eq. (7),
with the DoS given by ν(E ) = 1

N

∑
k δ(E − εk ). The spec-

trum of the slab in the normal state is obtained by including
the screened potential, the Hartree shift and the chemical
potential at half filling. The result is shown in Fig. 7(b) and
qualitatively reproduces the behavior shown in Fig. 7(a) and
the general trend according to which a larger gap is less
sensitive to the applied electric field. At the same time, we see
that a much more pronounced response appears with respect
to the one obtained by solving the self-consistent problem.
As in the case of the square lattice, an average level spacing
of 3 × 10−5t is obtained in energy windows of 0.1t around
the Fermi energy and the gap at zero applied voltage is �0 =
2.9 × 10−4t for U = 0.6t , so the gap is just one order of
magnitude larger than the average level spacing.

VII. SMALL GRAINS AND DOTS

In the previous sections, we concentrated on studying the
behavior of the system for fixed number of points in the BZ.
We now study how the system response changes by reducing
the number of points in the BZ and study a smaller system that
rather describes a clean dot or a grain. By decreasing the size
of the system, we expect an enhancement in the sensitivity
to the gate that can be due to the increase of average level
spacing and overall reduction of DoS. We keep the number
of layers to N = 20 and reduce the size of the in-plane lattice
by setting Nx = Ny = 80. The average level spacing has been
estimated to be 5.2 × 10−5t , which is larger but on the same
order than the cases studied in the previous sections. On
the other hand, a reduced DoS is observed, with consequent
reduction of the gap size at zero gate voltage with respect
to the cases analyzed in the previous sections. The average
gap � versus applied gate is shown in Fig. 8. The curves
smoothly decrease to zero, in a fashion similar to the BCS
temperature dependence. In Fig. 8(a), we fix U = 0.5 t and
vary the relative dielectric constant εr . The curves fall all on
top of each other upon proper field rescaling (not shown). In
Fig. 8(b), we increase the pairing strength and confirm that,
for a larger gap, the result remains valid. The behavior is
consistent with the nanograin character of the system [25–30],
with an average level spacing on order of the zero voltage gap.

To understand the origin of the behavior, we performed
analogous simulations for a different in-plane lattice model.
For the case of a triangular lattice (results not shown), we
notice a strong modulation of the gap with the applied gate
voltage, but the smooth decrease to zero is not observed. We
then ascribed the behavior shown in Fig. 8 to the peculiar
spectrum of the square lattice that features a high degree of
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FIG. 8. Gap as a function of the applied gate voltage for a
system characterized by N = 20 and Nx = Ny = 80, with in-plane
periodic boundary conditions. (a) U = 0.5 t varying εr . (b) εr = 10
varying U .

nesting of the Fermi surface, with a van Hove singularity
appearing at half filling in the infinite in-plane case.

VIII. DISCUSSION

The analysis presented tackles the problem of the simulta-
neous condensation of a superconducting gap and screening of
an externally applied field in a fully self-consistent way. The
Poisson Eq. (3) includes the part of the Coulomb interaction
that describes repulsion of the average charge of each layer
and results from minimization of the total energy. It does not
include a finite in-plane momentum transfer. The problem is
solved exactly at the mean-field level and does not account for
phase fluctuations.

The results and methodology open the way to reliable mod-
eling of systems where the surface physics has a nontrivial
content, such as the case of a Rashba spin-orbit interaction,
that is controlled by an applied electric field, or a multiorbital
character of the band structure that enables an electric-field
controlled orbital-Rashba effect. Screening in absence of pair-
ing converges very quickly and the joint impact of electric
field, sample geometry, and Rashba field can show nontrivial
results on the gap.

In summary, we find that in crystalline thin metals, a strong
sensitivity to an applied electric field appears in the weak cou-
pling limit, when the gap is just approximately one order of
magnitude larger than the average level spacing of the system
in the normal state. The latter sets an inverse length scale for
the system size, below which the system becomes extremely
sensible to applied electric field. In this case, the gap shows
sudden rises and falls as the applied voltage is increased that
are similar to the well-known shape resonances appearing in
the zero temperature gap and in the critical temperature as the
thickness of the system is reduced. This behavior reflects the
DoS modification induced by the screened potential acting
mostly on the outermost few layers. For a perfectly clean
crystalline structure, the observed behavior can be understood
only in terms of the entire DoS spanning the whole bandwidth.
The introduction of an energy smearing in the DoS emulates
the effect of disorder and increased thickness, and a moderate
broadening washes out the effect, showing a gap that mainly
follows the DoS at the Fermi level. Our results are expected to
be significant for layered materials and thin crystalline metals
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allowing control of superconductivity by an externally applied
electrostatic field.
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