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DNA replication is a key biochemical process of the cell cycle. In the last years, analysis of in vitro single-
molecule DNA replication events has provided new information that cannot be obtained with ensembles
studies. Here, we introduce crucial techniques for the proper analysis and modelling of DNA replication
in vitro single-molecule manipulation data. Specifically, we review some of the main methods to analyze
and model the real-time kinetics of the two main molecular motors of the replisome: DNA polymerase
and DNA helicase. Our goal is to facilitate access to and understanding of these techniques to promoteth-
eir use in the study of DNA replication at the single-molecule level. A proper analysis of single-molecule
data is crucial to obtain a detailed picture of, among others, the kinetics rates, equilibrium contants and
conformational changes of the system under study. The techniques presented here have been used or can
be adapted to study the operation of other proteins involved in nucleic acids metabolism.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

DNA is the biological polymer carrying the genetic instructions
for life. DNA replication (or duplication) is an essential part for bio-
logical inheritance, which ensures that upon cell division the two
new daughter cells contain the same genetic information as the
parent cell [10]. DNA is made up of a double helix of two comple-
mentary strands that are replicated synchronously, in a process
known as semiconservative replication [63]. This process implies
that each strand of the parental DNA molecule serves as a template
to produce its complementary counterpart. A complex and highly
dynamic protein machinery, referred to as the replisome, is in
charge of robust, and accurate DNA replication needed for cell sur-
vival [6,39]. Fig. 1. The core components of prokaryotic and eukary-
otic replisomes are replicative DNA polymerases, the helicase-
primase and the single-stranded DNA binding proteins (SSBs).
Depending on the organism, a variety of other proteins associate
transiently and coordinate their activities with the core elements
to carry out DNA replication [10,34]. Replicative DNA polymerases
synthetize the new complementary strand of DNA by the stepwise
addition of the corresponding complementary nucleotide (dNTPs)
[94]. These enzymes are designed to maintain low mutation rates;
they incorporate one wrong nucleotide per 104 � 105 nucleotides
polymerized. This fidelity is further enhanced by a factor of 102-
103 by their associated exonuclease activities, which hydrolyze
the mismatched nucleotide from the 30 end of the hairpin [53,5].
In addition, many replicative DNA polymerases, present an intrin-
sic strand displacement activity (the ability to displace down-
stream DNA encountered during synthesis, without the help of a
helicase) [15]. Replicative helicases form ring-shaped structures
that encircle one (or two) of the DNA strand(s) and utilize the
chemical energy of NTPs to unwind the DNA fork in coordination
with the DNA polymerase [83,62,82]. Fig. 1. The SSB proteins bind
with high affinity to single-stranded DNA and constitute the
nucleo-protein complex upon with the other replisome compo-
nents work [93,31]. Replicative DNA polymerases and helicases
work as molecular motors that harness chemical and thermal ener-
gies to generate unidirectional mechanical motion. All molecular
motors operate at energies comparable to those of the thermal
fluctuations [50,13]. Therefore, they experience continuous agita-
tion by random Brownian motion, which is eventually reflected
in fluctuations in their real-time kinetics. Biological molecular
motors have evolved to take advantage of these Brownian fluctua-
tions, which they couple with chemical potentials (dNTP or NTPs)
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Fig. 1. Simplified view of the core components of the mitochondrial DNA replisome.
Helicase opens the DNA fork separating the two strands. The leading strand, is
replicated directly by the DNA polymerase, and the lagging strand, is initially bound
by SSB proteins for later replication. In other replisomes, several primase subunits
usually associate with the helicase to prime replication of the lagging strand, which
is replicated in the opposite direction in the form of short Okazaki fragment (not
shown). Adapted from [80].
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to exhibit unidirectionality rather than random motion and high
rates, e.g., some DNA polymerases can synthetize DNA at a rate
of 500–1000 nt/s [87].

In the last two decades, the advent of in vitro single-molecule
techniques has allowed researchers to explore, for the first time,
the molecular mechanism that govern the operation of many pro-
teins involved in DNA replication including DNA polymerases and
helicases [64,99,26,68,11]. In particular, in vitro single-molecule
manipulation techniques, such as optical and magnetic tweezers,
have provided mechanistic information about the inner workings
of these systems that cannot be obtained with ensemble tech-
niques. Briefly, single-molecule detection opens the possibility to
follow the activity of individual biological molecular motors, such
as DNA polymerases and helicases in real-time. In this way, it is
possible to detect and quantify transient features of the reaction
as rare events and heterogeneous behaviour [67,30,65]. This possi-
bility is instrumental in unveiling the complex dynamics of these
biological motors. The position of the biological motor is measured
indirectly through the position of a microsphere (polystyrene
bead) linked to the motor or to their substrate (e.g., DNA), with a
resolution of 1–10 nm. The beads are manipulated by the trapping
or manipulation field (optical or magnetic), which allow to mea-
sure and apply controlled mechanical forces in the order of
picoNewtons (pN), Fig. 2A and D. Thus, in vitro single-molecule
manipulation techniques allow measuring the tiny mechanical
forces generated during the course of a reaction and applying con-
trolled mechanical forces directly on it. Note that mechanical force
is a byproduct of the reaction of molecular motors. The goal of
measuring and applying external forces to these systems is to
determine the magnitude of the rates and free energies of the
mechanical steps of their reaction. In this way, a detailed picture
of the mechanical coordinate, and its relation with the chemical
coordinate of the reaction (mechano-chemistry) can be obtained
[50].

The spatial resolution of single-molecule manipulation tech-
niques is limited by drift and thermal noise [35,21,56,37,81]. Ther-
mal fluctuations affect both the instrument and the sample and
provide a fundamental limit to the resolution of a given experi-
ment. Because molecular motors operate at energy levels compara-
ble to those of thermal motion, single-molecule manipulation data
often present low signal to noise ratios [13]. In addition, in the case
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of DNA replication studies, the flexibility of the DNA substrate
increases the noise level of the data significantly [35,14].

Low signal to noise ratio data requires special data analysis
techniques, which typically accumulate evidence (locally or glob-
ally) aiming to obtain accurate and unbiased kinetic information.
The optimal extraction of the kinetic information from the stochas-
tic operation of individual DNA-based molecular motors is still an
open theoretical challenge. Here, we aim to provide a perspective
on some relevant techniques for the analysis (Section 2) and mod-
elling (Section 3) of DNA replication and DNA unwinding activities
obtained by in vitro single-molecule manipulation techniques. Data
analysis techniques allow extracting the main phenomenological
information from the individual trajectories. Models predict rela-
tions between the observations, which, compared with the
observed relations, enable the identification of the underlying pro-
cesses. Thus, models provide insight on the mechanisms and
increase the future predictability of the phenomena. Here, we
review fundamental models of DNA unwinding and replication
(in different conditions and in the presence or absence of ligands),
and also model selection criteria. We center our description on
methods used to analyze and model in vitro single-molecule
manipulation data on DNA replication. Similar/related data analy-
sis and modelling techniques have been used to study the real-
time kinetics of the activity of other nucleic acid-based molecular
motors studied at the single-molecule level, such as RNA poly-
merases [33,32,25] and ribosomes [103,23]. Data analysis and
modelling of the stochastic molecular motor trajectories have both
benefited from and contributed to statistical physics developments
[84]. This fruitful interaction will continue (Section 4).
2. Data analysis

Single-molecule manipulation techniques provide a way to
measure properties of individual molecules (e.g., position, orienta-
tion, end-to-end extension), which can be used as reaction coordi-
nates to follow the evolution of the molecule along a reaction
pathway in real time. Using the DNA extension as a reaction coor-
dinate, this technique allows monitoring the activity of replicative
DNA polymerases as they convert single-stranded (ssDNA) to
double- stranded (dsDNA) DNA, Fig. 2A [57,104,43,58,78], and
replicative DNA helicases that unwind dsDNA to ssDNA, Fig. 2D
[47,55,60,88,95,89,96,11,48].

For example, in optical and magnetic tweezers experiments, as
those shown in Fig. 2A and D, the experiment provides the mea-
sured DNA distance X as a function of time t at the given tension
f . The force extension curves of ssDNA, xssðf Þ, and of dsDNA,
xds fð Þ, provides the information required to convert the changes
in distances between the beads to replicated nucleotides [14].
The conversion factor depends on the experimental configuration.
With the experimental configuration shown in Fig. 2A, the number

of nucleotides replicated is given by
X tð Þ�X tpe;0ð Þ
xds fð Þ�xss fð Þ , as each replication

step involves the convertion of one ssDNA nucleotide to its dsDNA
configuration. (tpe;0 is the initial time of primer extension DNA
replication.) Whereas the number of nucleotides unwound by a
single helicase using the experimental configuration shown in

Fig. 2D is given by
X tð Þ�X tu;0ð Þ
xss fð Þ�xds fð Þ , as it involves the transformation of

one base pair of dsDNA into one nucleotide of ssDNA along the
pulling coordinate. (tu;0 is the initial time of DNA unwinding).
Other experimental configurations involve other conversions, for
example, if the ssDNA is covered by SSB protein the ssDNA-SSB
complex force extension curve xSSBðf Þ should be characterized
and used instead of the ssDNA force extension curve xssðf Þ. See
Fig. 2G [17].



Fig. 2. A) Example of a primer extension (p.e.) DNA replication experiment with optical tweezers. The two ends of a dsDNA molecule containing a ssDNA gap in the middle
are attached between two micron-sized beads: one (grey sphere) held by the optical trap (highly focalized laser, red) and the other (blue sphere) held by suction on top of a
micropipette. As replication proceeds, ssDNA is converted into the more rigid dsDNA changing the distance between the beads. The change in distance is registered and later
processed to obtain the polymerase trajectory (template position versus time). B) Representative replication traces showing transient pause events (red) intercalated with
active replication events (black). The inset shows the velocity histogram. C) Pause length frequency distributions. Depending on the experimental conditions, the pause length
frequency distribution can be compatible with a single (red line) or a double exponential distribution (green line). Other distribuitions are also possible. D) Diagram of a
magnetic tweezers experiment measuring the DNA unwinding activity of a single replicative helicase. One of the ends of the dsDNA (bearing a helicase loading site) is
attached to a glass surface and the other end to a super-paramagnetic microsphere manipulated by the magnetic field. E) Representative unwinding trace showing the
binning in displacement and illustrating the determination of first passage times si . F) First-passage time (FPT) distribution. Experimental data (blue circles) are fitted by a
model with pauses and forward and backward stepping (blue line). Predicted FPT distribution without pauses (orange) and with only forward stepping (green) are shown for
comparison. G) Experimental configuration to measure the replication of ssDNA covered with SSB with optical tweezers. When the replication velocity is slow, direct
identification of pauses and maximum replication velocity V is not possible, neither from the traces nor from the velocity histogram. H) Identification of peak velocities Vpeak

with prominence greater than P (which avoids the selection of secondary peaks). Traces are averaged on a time window s then the instantaneous velocity is represented
versus time to proceed to peak velocity identification. I) The mean of the velocity peaks Vpeak;mean is computed for each prominence P for different time windows s. For an
intermediate value of the prominence P a clear plateau is present in the Vpeak;meanðsÞ plot, whose value gives the maximum velocity V . (Panel A in this Figure is adapted from
Ref. [43]; Panels B and C are from Ref. [69]; Panels D, E and F are from Ref. [11]; Panels G, H and I are adapted from Ref. [17]. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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The first and most direct information we can obtain from a
replication trajectory is the polymerase mean velocity Vmean (usu-
ally expressed in nucleotides(nt) per unit of time, e.g., nt/s) and
the processivity N (the number of nucleotides replicated before
detachment). This information can also be restated as the mean
residence time per nucleotide T ¼ 1=Vmean (units of time per
nucleotide). The detachment time is then given by the product
N � T , and the detachment rate as kdetachement ¼ 1=ðN � TÞ.

Additionally, DNA replication trajectories present pauses or
transient inactive states that alternate with active replication
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events (see Fig. 2B). However, when the polymerization rate is
low, these two states cannot be easily disentangled due to the
noise in the trajectory. The main source of experimental noise
comes from the high flexibility of the ssDNA polymer at the low
tensions relevant to study DNA unwinding and DNA replication
(<10 pN). We briefly describe here the main techniques to separate
the pause and active state contributions in the trajectory.

When pauses can be identified from the trajectory plot
directly (as in Fig. 2B), we can obtain information on frequency
of pauses and pause duration. Pause identification is performed
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by direct statistical methods, as those we cite in Section 2.1. When
transitions from pause to active state on a trajectory are difficult to
identify, one of the pause identification methods, the velocity his-
togram, can still provide an estimation of the fraction of time in the
pause and in the active state, as described in Section 2.2. A typical
velocity histogram shows two peaks (inset Fig. 2B): one for the
pause state (centered at a velocity close to zero) and the other
for the active state (centered at velocity greater than zero). The
later peak corresponds to the maximum velocity or velocity with-
out pauses. However, when the signal to noise ratio decreases, the
velocity histogram cannot disentangle the pause and active states
contributions. In these cases, the prominence method allows to
estimate the active or maximum velocity [17]. The idea of the
prominence method is to identify a characteristic velocity higher
than the mean velocity and relatively independent of the interval
of computation of the velocity. This method is described in Sec-
tion 2.4. Section 2.3 describes an alternative to the velocity his-
togram, the first passage time distribution, based on binning in
positions and doing a histogram of first passage times. Section 2.5
comments on the Bayesian approach to data analysis, which is
more model-dependent.
2.1. Direct identification of pauses

In high signal to noise ratio trajectories (as those shown in
Fig. 2B) pauses can be identified using several methods, such as
plateau identification techniques, step-fitting algorithms or veloc-
ity threshold algorithms [16]. Signal to noise ratio sometimes can
be increased by averaging over a sliding time window
[98,90,1,16]. Time averaging can help to reduce the high frequency
noise at the expense of a reduction on time and position resolution.

Plateau identification techniques identify pauses directly as the
constant position intervals in the trajectory (see Fig. 2B). During a
pause, the next position (or a mean of next positions) is not signif-
icantly different from the mean of the previous positions [16]. This
observation provides a pause identification method comparing the
mean and standard deviation of the previous points with the mean
and standard deviation of the next points, which allows to autom-
atize the data processing. Additionally, step-fitting algorithms
search to fit the trajectory with the optimal number of steps
[52,92], when the resolution is high enough for pause
identification.

Velocity threshold algorithms [42,16] identify pauses as sections
of the trajectory where the local velocity is below a certain value.
One effective method to select an appropriate velocity threshold
is doing a velocity histogram [43,69]. For high signal to noise trajec-
tories (as in Fig. 2B) the velocity histogram presents two clear peaks
(as in the inset of Fig. 2B): one centered around zero velocity, iden-
tified as the pause state contribution; and another peak center
around a nonzero velocity, identified as the active state contribu-
tion. When the system is at a pause state, the average velocity is
zero (with deviations due to the noise in the trajectory that provide
the width of the peak). In contrast, at the active state, there is a
finite mean velocity due to the stepping of the motor. (The devia-
tions from the mean active velocity are due to the stochastic nature
of the stepping process and to the noise in the trajectory.) The valley
of the velocity histogram between the two peaks provides the
threshold velocity, which is then used to identify the two states
along the trajectory (active and pause states). Additionally, peaks
at negative velocities may appear when exonuclease events during
DNA synthesis are significant [58,78].

Pause identification allows computing other magnitudes that
characterize the trajectory. In particular, the fraction of time the
polymerase (or helicase) is in active state is named moving
probability, MP ¼ ðtotal time without pauses in the trajectoryÞ=
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ðtotal time in the trajectoryÞ. We can also determine the active
and passive state contribution to the mean residence time per
nucleotide T ¼ Ta þ Tp. The active time per nucleotide is given by
Ta ¼ T �MP, and the pause time per nucleotide by
Tp ¼ T � ð1�MPÞ. We can also define the replication velocity or
maximum replication velocity, V ¼ 1=Ta (or sometimes Vmax), as
the average replication velocity in the active state.

Pause identification provides a great deal of information about
pause behavior and its tension dependence. Calculation of the
pause length frequency distribution q tð Þ reveals whether one or
more characteristic pause durations are present in the trajectory
(Fig. 2B, C). First, we define the points ti of the pause duration bin-
ning. Then, we compute the pause length frequency distribution
for a trajectory (or set of trajectories) as

q ti
� �

¼ number of pauses of duration between ti and tiþ1ð Þ
tiþ1�tið Þ� total time without pausesð Þ : ð1Þ

q tð Þdt provides the frequency of entering to a pause of duration
between t and t þ dt when the polymerase is in its active state. (ti
is estimated as the mean duration of the pauses of duration
between ti and tiþ1.) This procedure also allows to have a non-
uniform binning in the pause duration, which is required when
there are two or more characteristic pause durations of different
order of magnitude. For example, in Fig. 2C a smaller bin size is
used for small pause durations (reflecting short pauses in the tra-
jectories of Fig. 2B), while a larger bin size is used for large pause
durations (reflecting long pauses in trajectories of Fig. 2B). This
non-uniform binning allows to adequately resolve the distribution
for short pauses, and to have enough counts to have a reliable
value in each bin for long pauses (Fig. 2C). Pause length frequency
distribution is also named as distributions of pause durations,
waiting-time distributions and dwell-time distributions [54].

This pause length frequency distribution, Eq. (1), fits to the sum
of one or several exponentials, depending on the number of char-
acteristic pause durations present on the distribution [44]. For
example, when two characteristic pause durations are presents
(as in Fig. 2C) the pause length distribution fits to

q tð Þ ¼ a1k1e�k1t þ a2k2e�k2t ; ð2Þ

where ai is the pause frequency of pause i, (i.e., the frequency of
entering to a pause state of type i), and 1=ki is the characteristic
pause duration of pause i, or average pause length of pause i. These
parameters of the fit are related to the enter and exit rate to (and
between) pauses, as it is discussed below in Section 3.1. When
the pause duration distribution is plotted in log-scale (as in
Fig. 2C), the number of characteristic pause durations becomes
apparent as the number of nearly straight sections in the plot (pro-
vided the distribution is well resolved and the characteristic pause
durations are different enough). In cases where it is unclear the
number of characteristic pause durations to use on the fit, one
can resort to model comparison likelihood techniques as the AIC
information measure [3,12]. Additionally, the average pause length
1=ki and the pause frequency ai of the pauses can depend on the
force applied to the DNA or to other relevant condition in the
DNA replication experiment (as whether it is a GC or a AT bound
in the fork [69]). The dependence of pause frequency and duration
on force will inform about the nature of the pause state (as dis-
cussed below in Subsection 3.1).

The magnitudes introduced up to this point constitute a com-
plete phenomenological description of the observed replication
velocities and pauses. This level of detail on the pause description
is not always possible. In the next subsections, we address how to
deal with more noisy trajectories where a detailed pause identifi-
cation and description is not possible.
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2.2. Velocity histogram

When the direct identification of pauses is not possible, a his-
togram of the instant velocities can still provide information on
the fraction of time that the system is in pause [43]. Typical veloc-
ity histograms present two peaks, one centered around zero veloc-
ity, the pause peak, and another one centered around a nonzero
velocity, the active peak. See for example the inset of Fig. 2B.

When these two peaks are well resolved, we can identify the
counts of the pause states and those of the active states. In this
case, individual pause identification is also possible, as each veloc-
ity count corresponds to a time in the trajectory (see previous sub-
section). When the two peaks cannot be well resolved, we can
resource to methods that help to get a better resolved velocity his-
togram. One of the methods is to average the data over a sliding
time window, which averages out the (high frequency) experimen-
tal noise. It is important to optimize the width of the average time
window. If the average time window is too wide, we lose relevant
information; while if the time window is too narrow, the experi-
mental noise is still present. Another method is to compute the
instant velocity in a larger time window, which reduces the signal
to noise ratio in the velocity. Note that if the velocity time window
is too wide, it will average out pause and active state velocities,
while if it is too narrow, it will not change the signal to noise ratio
in the velocity significantly. The average time window and the
velocity time window are optimized to maximize the resolution
of the two peaks in the velocity histogram.

Even upon optimization of the position of the two peaks, an
overlap between them may remain, see for example the inset of
Fig. 2B. In the overlap region it is unclear which counts correspond
to active or to pause states. If the minimum between the two peaks
is low, the two peaks are well-resolved and the location of the min-
imum can be used as pause identification criteria along the trajec-
tory (as described previously in Section 2.1). If the minimum is
high, the pause identification is not possible, but we can estimate
the fraction of time in each state from the velocity histogram.
The more elementary method to deal with this problem is to find
the location of the minimum between the peaks and assign the
counts below to the pause state, and the counts above to the active
state. A more elaborate method is fitting the velocity histogram to
a two Gaussian functions. The area under each Gaussian is propor-
tional to the pause and active state probability, respectively. The
quotient between the pause area (or counts), Ap, and the active
state area (or counts), Aa, gives the value of the ratio between
the pause and the active time per nucleotide Tp=Ta ¼ Ap=Aa. With
this information we can compute the moving probability,
MP ¼ Ta

T ¼ 1
1þTa=Tp

; and also, the (maximum) replication velocity

V ¼ MP � Vmean.

2.3. First passage time distribution

The velocity histogrammethod takes equal time bins on the tra-
jectory and gets the different displacement (in nucleotides), and
therefore velocities along the trajectory. Instead, the first passage
time distribution method does the binning in displacement,
Fig. 2E, giving for a fixed displacement the different first passage
times along the trajectory. The observed first passage time distri-
bution is then analyzed to extract the replication rate, the number
of pauses and their characteristics [22,27,11].

The theoretical first passage time (FPT) distribution for a single-
step of a molecular motor stepping forward at a rate kþ is given by
an exponential distribution,

qFPT tð Þ ¼ kþe�kþt : ð3Þ
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It gives the probability of a single-step occurring at a time t
(after the previous one). However, in practice, frequently the posi-
tion noise is higher than the single-step length. Hence, the dis-
placement binning should be large enough (higher than the
typical position noise) to prevent noise dominating the first pas-
sage time distribution. For m steps binning, the FPT distribution
is given by the probability that m forward steps require a time t,

qFPT tð Þ ¼ kmþ
m�1ð Þ! t

m�1e�kþt ; ð4Þ

which is a gamma distribution [86,27]. When the molecular
motor additionally has backsteps (k�–0) the FPT distribution
becomes wider. (In this later case, its analytic expression can be
stated in terms of modified Bessel functions of the first kind
[22,11]). Entrance in pause states increases the time spent to
advance the displacement binning length, increasing the probabil-
ity of higher first passage times. Thus, FPT distributions with large
tails at high first passage times reflect the presence of one of sev-
eral pauses (or backstepping). See Fig. 2D, E, F. Each interval of
the FPT can be approximated by a single contribution (forward,
pause), provided the characteristic times (pause, forward stepping)
are well separated. This approach has allowed the identification of
pause states in the operation of a DNA helicase and a RNA poly-
merase [27,11].

Both FPT distribution and velocity histogram methods resort to
local information in the trajectory after a binning (on space or
time). These methods are limited to cases where the time scales
are well separated. Prominence method and Bayesian methods
explained below have proven to be more effective when dealing
with cases where pause identification is difficult. Their strength
is that they use information on the sequence, additionally to the
(averaged or binned) local information.

2.4. Prominence method

We can resort to the prominence method [17] when it is not
possible to resolve the two peaks in the velocity histogram (e.g.
Fig. 2G). The prominence method aims to obtain the (maximum)
replication velocity V from the information contained in the trajec-
tory. The idea is that the more prominent peaks in the velocity time
series correspond to the (maximum) replication velocity V , after
noise removal (Fig. 2H). Prominence is a term from topography
and mountaineering, serving to identify the main peaks in a moun-
tain ridge. The prominence of a peak is the difference between its
height and the lowest closed contour line encircling it and without
any higher peak inside. Here, in the velocity vs. time plot, the
prominence of a velocity peak is given by the difference in height
between the peak and the higher valley separating the peak from
another higher peak.

The procedure involves computing the velocity time series
using a time window s, then selecting the more prominent peaks,
with prominence at least P, in the velocity time series (Fig. 2H).
After the mean of the peaks is computed and represented for each
prominence P as a function of the time window s. The maximum
velocity appears as the height of a plateau in this plot for the
appropriate prominence P. See Fig. 2I. (The adequate time window
s and the prominence P do not need to be known a priori, a wide
range is taken for both and the prominence method provides the
adequate range.)

The procedure is the following. First, the velocity time series is
computed from the trajectory (position vs. time) using a time win-
dow of length s, VinstðtÞ ¼ ðX t þ sð Þ � X tð ÞÞ=s. Second, the peaks of
prominence P or higher are selected on the velocity time series.
After the mean of the peaks Vpeak;mean is computed and represented
for each prominence P as a function of the time window s. See



J. Jarillo, B. Ibarra and Francisco Javier Cao-García Computational and Structural Biotechnology Journal 19 (2021) 3765–3778
Fig. 2I. Finally, the plots of the mean of the velocity peaks Vpeak;mean

as a function of the velocity time window s for different promi-
nences P, reveals that there is a plateau of Vpeak;mean which is both
flatter and larger for the appropriate value of P. The height of the
plateau for this optimal value of P gives a good estimate of the
(maximal) replication velocity V .

Large time windows s lead to a velocity plot with high signal to
noise ratio. However, if the time window is too large it averages
active replication periods and paused periods, leading to velocities
below the maximum replication velocity. This is reflected in each
of the plot of the mean of the velocity peaks Vpeak;mean as a function
of the velocity time window s. See Fig. 2I. At low time window s,
the plot is dominated by large velocities due to the noise in the tra-
jectory, giving large values of Vpeak;mean. For intermediate values of
the time window, the influence of noise decreases, presenting a
plateau at intermediate times. The plateau is clearer for the appro-
priate prominence P, and gives the replication velocity (on the
active state) V . For large values of the time window, similar or lar-
ger than the characteristic time in the active replication state, the
time window implicates averaging active and pause state periods,
and Vpeak;mean goes to the mean replication velocity.

Dividing the replication velocity V obtained by the mean repli-
cation velocity of the trajectories Vmean we obtain the moving prob-
ability asMP ¼ Vmean

V . The active time per nucleotide can be obtained
as Ta ¼ T �MP, and the pause time per nucleotide as Tp ¼ T � Ta. A
complete description of the prominent method can be found in the
Supplemental Information of Ref. [17].
2.5. Bayesian methods

Other class of methods to analyze the trajectories are the Baye-
sian methods [24]. Bayesian methods fit a model of the system and
the experimental device to the observed data. The idea is to find
the more probable values of the model parameters given the
observed data. This is linked through Bayes theorem to the ques-
tion of which are the values of the model parameters maximizing
the probability that the data is observed (as in fact it was). Most of
the models considered belong to the class of models known as hid-
den Markov models (HMM), as they assume that there is an under-
lying Markovian behavior of the system. A system is said to be
Markovian when its next state depends only on its present state
and it is independent on the previous story. (The models described
in the next section belong to this class of models.)

The experimental device characteristics are also included in the
model, for example, through an experimental noise parameter
affecting the observed data. This noise parameter can also be fitted,
and the result should be consistent with the expected experimen-
tal device accuracy.

Bayesian methods in combination with HMM have been suc-
cessfully used for example for the study of gene transcription
[97], after one of his early prominent uses, speech recognition
[85]. They also have a wide set of potential applications on
single-molecule data analysis [28,74,29]. These methods are very
powerful to identify the best parameters values, and even the best
model of a set of models [24], combining them with a model com-
parison criterion, as AIC [3,12]. They provide means to include
other a priori information (obtained in previous complementary
experiments). It might be argued that their drawback is that they
require a concrete model (or set of models) to proceed with the
analysis. However, this is also true (to a certain extent) for the
more frequentist data analysis presented in previous subsections.
In previous subsections we assumed a pause and an active state
characterized by different velocities, and the presence of transi-
tions between them. But in the previous subsections we do not
had to assume a priori whether there was one or several pause
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states. In this sense the approach of the previous subsections can
be considered a more model-independent analysis.

In the next section, Section 3, we present models which link the
observed replication velocities and pause characteristics with the
underlying processes. The models allow us to identify these under-
lying processes and get a deeper understanding of DNA unwinding
and replication.
3. DNA replication models

Models allow the identification of the underlying processes in a
phenomenon, increasing its predictability. Assuming a process, a
model predicts relations and dependencies in the observations.
When we fit a model to a set of experimental data, we are checking
whether the assumed process is compatible with the relations and
dependencies between the observations.

The fit of the model to the data can be performed with a mini-
mization of the mean squared differences between the observed
data and the predicted value of the model. This minimization sets
the optimal values of the model parameters that describe this set
of data. A deficient fit indicates that the model has wrong or
incomplete assumptions on the possible underlying processes.
Models with the same number of free parameters can be compared
directly using the minimization of the mean squared differences.
When comparing models with different number of free parame-
ters, we must use model comparison criteria (based on Bayesian
statistics), as the Akaike Information Criterion (AIC) [3,12]. These
comparison criteria compensate that models with more parame-
ters generally fit better leading to overfitting. It is easy to find mod-
els with n parameters that fit a set of n data, but in fact this fit
would be only a reparameterization of the data. This overfitting sit-
uation does not provide information on whether the underlying
process assumed on the model is compatible with the data. In prac-
tice, to prevent overfitting, we should keep the number of param-
eters well below the number of data points. We should also keep
track of data uncertainties and the uncertainties in the fitted
parameters. We should be aware that a large uncertainty in a fitted
parameter is a sign of low capability of the data to determine this
parameter. In other words, the model poses questions that cannot
be answer with the information contained in the data. Thus, a large
uncertainty in a parameter indicates that we should either go for a
simpler model (with less ingredients and parameters) or to do
complementary experiments (which provide more information
on the process related to this parameter).

3.1. Pause modelling

The key ingredient in the modelling of pauses is the number of
pause types. Pause identification was described in the previous
Section 2.1. It identified the number of pause types, as the number
of characteristic pause length observed, i.e., the number of expo-
nentials with different exponents fitting the pause length fre-
quency distribution q tð Þ. The number of types of pauses
identified restricts the reasonable pause models, but not uniquely,
as we mention below for the two-pause case.

For the cases with one pause type, Fig. 3A, the measured pause
length frequency distribution fits to q tð Þ ¼ a1k1e�k1t . For this
model, the fitted parameters give the entry rate ka1 ¼ a1 and the
exit rate k1a ¼ k1 from the pause state.

When two pause types are identified, the pause length fre-
quency distribution fits to q tð Þ ¼ a1k1e�k1t þ a2k2e�k2t . A possible
model is the linear two pause model represented in Fig. 3C. For this
model, the fitted parameters give the entry rates kai ¼ ai and the
exit rates kia ¼ ki from the pause state, with i ¼ 1;2. However,
the same pause length frequency distribution is compatible to



Fig. 3. Kinetic models for pause and active states of DNA polymerases. Parameters
kij denotes the transition rate from state i to state j. A) Top: Model with a unique
pause state. Bottom: Schematic representation of the effect of an external force f on
the free energy landscape projected along the displacement coordinate in the
direction of the force. The free energy reduction is given by the work done by the
force: f � da1 for the activation state, f � Da1 for the final state. B) Cyclic model with
two pause states. In this model direct transitions between pause states are allowed.
C) Linear model with two different pauses states. In this model it is not possible to
go directly from one pause state to the other one, without passing through the
active state. D) Model of polymerization-exonucleolysis transitions mediated by a
pause state. DNA tension induces entrance into exonucleolysis through the pause
intermediate [43,41]. (Panels A, B and C adapted from Refs. [69,73]).
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the more general cyclic two pause model represented in Fig. 3B.
See Refs. [44,73]. This cyclic pause model contains the linear two
pause model as a particular case where the transitions between
pauses have negligible rates. The general cyclic model has the
drawback that has more free parameters (six transitions rates)
than those provided by the pause length frequency distribution
(two pause entrance rates and two characteristic duration of
pauses). However, the positivity of all the six rates gives maximum
and minimum values compatible with the observed fitted four
parameters, as shown in Ref. [73]. Nevertheless, only if there is a
biological motivation the use of a model with more parameters
than those directly measure seems reasonable. In this case, the
model calls for complementary experiments or information to help
reduce the uncertainty in the transition rates on the cyclic case.

The characteristic entrance and exit rates can also depend on
the mechanical tension applied to the systems and/or on the
DNA sequence, as previously stated in Section 2.1 for the fitted
parameters of the pause length frequency distribution qðtÞ. The
force dependencies of the entry and exit rates from pause states
reveal the magnitude of conformational changes dij (along the force
direction) to the activation state, which governs the entry to and
the exit from the pause state. See bottom of Fig. 3A. This distance,
dij, can help to reveal which may be the process leading to the
pause [69]. The force dependency of the entry and exit rates from
a pause state is given by

ka1 fð Þ ¼ ka1 0ð Þ � e
f �da1
kBT ; k1a fð Þ ¼ k1a 0ð Þ � e�

fd1a
kBT : ð5Þ

The distance, dij, parameterizes the different effect of the force
on the entry and exit rate. The work f � dij gives the magnitude of
the change of the effective barrier to the activation state of the pro-
cess. Its ratio with the characteristic energy of the thermal fluctu-
ations kBT determines the magnitude of the increase or decrease of
the process rates, as shown in the expressions of Eq. (5). Fitting
these expressions to the observed force dependence of the rates
provides the rates at zero force, kijð0Þ, and the conformational
change distances dij.
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The equilibrium constant of the process can be defined by

Ka1 fð Þ ¼ ka1 fð Þ
k1a fð Þ ¼ ka1 0ð Þ

k1a 0ð Þ � e
f da1þd1að Þ

kBT ¼ Ka1 0ð Þ � e
fDa1
kBT : ð6Þ

This gives a complete characterization of the entry and exit
from the pause, and a clue of the possible conformational changes
associated to this pause through the value of Da1 ¼ da1 þ d1a. This
simplified description of the effect of force on process rates is fre-
quently used in biophysical studies. For a description of the simpli-
fications involved and more exact descriptions see Refs.
[51,44,101].

More advanced multistate models and their kinetics are
described in Refs. [50,18,66]. Some of these models have been
applied to interpret the force-velocity dependencies of replicative
DNA polymerases switching between polymerization and exonu-
cleolysis, Refs. [58,41,78], Fig. 3D. Many replicative DNA poly-
merases present two main active sites; the polymerization (Pol)
and exonucleolysis (Exo) active sites. The Pol site catalyzes 50-30

DNA synthesis by the stepwise addition of the complementary
nucleotide (dNTP) on to the terminal 30 end of the nascent DNA
strand (primer), while the Exo site hydrolyzes mismatched nucleo-
tides from the primer strand in the 30 to 50 direction increasing the
fidelity of the copy. The Exo site is separated by 40–60 Å [102,7]
from the Pol site and only binds single-stranded DNA (ssDNA).
Therefore, the primer transfer reaction implies substantial confor-
mational changes and may involve intermediates states. A fined-
tuned coordination between polymerization and exonucleolysis
reactions is essential for the integrity of the genome. Modeling of
the pause kinetics of replicative DNA polymerases and their depen-
dence on mechanical tension applied to the DNA template has pro-
vided insight into the Pol-Exo transfer (or proofreading
mechanism) dynamics of DNA polymerases. As described below,
mechanical tension applied to the DNA template decreases the
polymerization rate until stalling (Fig. 4A). Interestingly, upon stal-
ling, a further increase of tension induces processive exonuclease
activity in several DNA polymerases [104,43,78], suggesting that
tension can be used as a variable to study the Pol-Exo equilibrium.
Modeling of the effect of tension on the moving and pause states of
phages Phi29 and T7 DNA polymerases has shown that the primer
transfer reaction between the two active sites is not a one step pro-
cess. In the case of Phi29 DNA polymerase, the primer transfer
reaction is intramolecular and implies at least two intermediates
states, one of which may work as a fidelity check point [43]. In
the case of T7 DNA polymerase, the primer transfer reaction is
intermolecular, following DNA polymerase dissociation the primer
is bound to the Exo active site of a new DNA polymerase [41] . In
summary, the ability to separate transient inactive states (pauses)
from active states and analyze their corresponding force depen-
dencies has been instrumental in determining the intermediates
of the proofreading reaction and to measure directly the kinetic
rates, equilibrium constants, and conformational changes associ-
ated with their interconversion.

3.2. Primer extension DNA replication models

Primer extension replication is the replication of ssDNA to give
dsDNA (See Fig. 2A). In vitro single-molecule manipulation experi-
ments with replicative DNA polymerases have shown that the
average primer extension rate presents a strong dependence on
mechanical force either applied to the DNA template (Fig. 2A,D)
or to the DNA polymerase directly (Fig. 4C).

When mechanical tension is applied to the DNA, the average
replication rate of many DNA polymerases increases initially with
tension, reaching a maximum rate at �6 pN. Above this value of



Fig. 4. Comparison between the effects of mechanical tension on the DNA (A and B) and mechanical load applied to the DNA polymerase (C-E). A) Effect of mechanical tension
of the primer extension replication rate of the mitochondrial DNA polymerase in the absence (blue) and presence of the mitochondrial SSB (mtSSBWT). Dots represent
experimental data, and lines the best fitted theoretical models. Eq. (8) for ssDNA and Eq. (11) for SSB covered ssDNA. B) Comparison of polymerase-SSB coupling behavior at
different tensions (f ). The energy landscapes (left) between the coupled state A and the uncoupled state B, for low force (solid line) and for medium force (dashed line), show
how force destabilizes the polymerase-SSB coupling. The diagrams (right) represent the polymerase-SSB coupling reduction due to force. [This decoupling effect is modeled
by Eq. (10).] C) Diagram of a primer extension experiment applying opposing (top) or aiding (bottom) force on a DNA polymerase. D) Effect of load on the maximum
replication rate Vmax at saturating dNTP. E) Ratio of the apparent nucleotide constant and the maximum replication rate, KM=Vmax , (Michaelis-Menten parameters of the
reaction) as a function of the force acting on the polymerase. (Panels A and B from Ref. [17], Panels C, D and E from [70]). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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tension, the replication rate decreases gradually until stalling
(Fig. 4A). Originally, the so called Global Model [57,104] was pro-
posed to explain the tension dependence as due to the activation
enthalpy of converting n bases from single- to double-stranded
DNA, which imposes

kpe fð Þ ¼ V fð Þ ¼ k 0ð Þ � exp �n�f � xss fð Þ�xds fð Þð Þ
kBT

h i
ð7Þ

where k 0ð Þ is the replication rate at zero force f . The exponential
argument accounts for the energy contribution involved in chang-
ing the length of n nucleotides from the ssDNA length per nucleo-
tide xssðf Þ to the dsDNA length per nucleotide xdsðf Þ at a DNA
tension f .

This model, Eq. (7), explains well the replication rate decay with
tension, f , for tension values above 4� 6 pN, with n ¼ 1. This value
of n indicates that only one template base is converted from ssDNA
to dsDNA, which is in accordance with strong evidence from struc-
tural, bulk and single-molecule experiments [75,76,4,41]. How-
ever, Eq. (7) can only explain the entire force–velocity plot
(including data at tension below 4� 6 pN) with a value of n > 1
[57,104]. Since only one nucleotide is added per polymerase step
(n = 1), this model implies that n� 1 bases have to be reverted
to the ss geometry after the activation state. These results are
not supported by previous structural and bulk kinetic studies.
Alternative models that only involve the two neighboring DNA seg-
ment have been proposed (Local Model and its variations:
Restricted-Cone Local Model and Minimalist Two Segment Model)
[36,4,79]. These models explained well the tension dependence of
the polymerization rate of some DNA polymerases, considering
n ¼ 1. However, the models relied on several assumptions about
the DNA-polymerase interactions and the nature of the rate-
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limiting step, which need further experimental validation (see Sup-
plementary Information of Ref. [17] for a more detailed
discussion).

Recently, Ref. [17] proposed that the initial increase of the DNA
replication rate with tension is caused by the mechanical disrup-
tion of the self-binding energies (secondary structure) of the
ssDNA template [9]. Template secondary structures are known to
hinder or slow down the advance of DNA polymerases [49,38,46].
This leads to the expression

kpe fð Þ ¼ V fð Þ ¼ k 0ð Þ � exp � n�f � xss fð Þ�xds fð Þð ÞþDGsec � 1�usec fð Þð Þ½ �
kBT

n o
; ð8Þ

where k 0ð Þwould be the replication rate at zero force in the absence
of secondary structure. The first term in the exponential argument
accounts for the energy contribution involved in changing the
length of n nucleotides (for DNA replication n ¼ 1 nt) from the
ssDNA length per nucleotide xssðf Þ to the dsDNA length per nucleo-
tide xdsðf Þ at a DNA tension f . The first term of the exponential dom-
inates the decay of the replication rate at higher forces (Fig. 4A blue
points and line.) The second term accounts for the contribution of
the secondary structure, which slows down the replication at low
forces, as shown in Fig. 4A. 1�usec fð Þð Þ gives the fraction of ssDNA
template bases forming secondary structure and decreases for
increasing force (Ref. [9] describes how to experimentally deter-
mine usec fð Þ from ssDNA force-extension curves). Each of the bases
forming secondary structure imposes an average effective energy
barrier of DGsec to the advance of the polymerase. Fig. 4A (blue line)
shows the fit of Eq. (8) to the force dependence replication rate of
the mitochondrial DNA polymerase, Polc. Future experiment would
clarify whether this model, Eq. (8), gives good fits for other replica-
tive DNA polymerases.
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In vitro single molecule manipulation experiments showed that,
in contrast to the effect of tension on the DNA, application of
mechanical load opposing the direction of movement directly on
the DNA polymerase decreases the average DNA replication rate
monotonically (Fig. 4C,D) [70]. Mechanical load interferes with
the translocation step of the polymerase, which becomes rapidly
the rate-limiting step of the reaction upon of application of force,
explaining the marked effect of force on the replication velocity
[50]. Modeling of the combined effects of load and dNTP concen-
tration on the maximum replication rate (at saturating dNTP con-
centration) and apparent nucleotide binding constant of the
reaction, (Vmax and KM, respectively, Fig. 4D,E) provided a detailed
picture of the coupling between the mechanical and chemical steps
of the nucleotide incorporation reaction [70].

The model that explained well the data considered that
mechanical translocation is independent on chemistry and there-
fore, the only force dependent rates of the reaction were the for-
ward and backward translocation rates. According to this model,
the kinetic expressions for the Michaelis-Menten parameters
Vmax, and KM can be expressed as the sum of a force independent
and a force dependent term

1
Vmax Fð Þ ¼ aþ b � eF�db=ðkBTÞ; KM Fð Þ

Vmax Fð Þ ¼ r þ s � eF�ds=ðkBTÞ; ð9Þ
where the coefficients a, b, r, and s are related to the rates of several
steps of the nucleotide incorporation cycle such as i.e., the catalytic
rate (a), the dNTP binding rate (r), and the forward/backward
translocation rates (b, r, and s). On the other hand, the db and ds

are the characteristic distances from the pre- and post- transloca-
tion positions to the transition state. Fits of the data with this model
yielded the values of several of the main rates and force dependen-
cies of the nucleotide incorporation cycle. In summary, modeling of
the data revealed that chemical catalysis and mechanical transloca-
tion are not directly coupled. Instead, upon chemical catalysis,
mechanical translocation of the enzyme occurs by thermal diffu-
sion. This diffusion is biased towards the post-translocation state
by binding of the next complementary nucleotide (dNTP) to the
polymerization active site [70].

3.2.1. Effects of DNA ligands on primer extension replication
The presence of ligands bound to ssDNA, as the single stranded

DNA binding proteins (SSB), favor DNA replication by suppressing
the formation of secondary structure, but at the same time, they
could also be a barrier to the access of the polymerase to the ssDNA
template. However, some polymerase-SSB pairs are found to inter-
act in such a way that the barrier imposed by the SSB for the ssDNA
replication is negligible [17]. This collaborative interaction is force
sensitive and is inhibited by different force values depending on
the polymerase-SSB pair.

The probability to find the polymerase-SSB pair forming the col-
laborative pair can be parameterized as a transition between two
states (collaborative and non-collaborative state),

Pint fð Þ ¼ 1

1þexp
DGintþf �d

kBT

� � ; ð10Þ

where DGint is the coupling energy between the pair and d is the
characteristic length of the conformational change that inhibits
the formation of the polymerase-SSB collaborative pair.

Thus, in this case, the primer extension replication rate is given
by

V fð Þ ¼ k 0ð Þ � exp �d�f � xSSB fð Þ�xds fð Þð Þ
kBT

h i
� Pint fð Þ þ 1� Pint fð Þð Þ � exp �n�DGSSB fð Þ

kBT

h in o
:

ð11Þ
The free parameter n, representing the mean number of nucleo-

tides to release from SSB per step, and the two free parameters of
Pintðf Þ, DGint and d, are fixed by fits to the experimental data on
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ssDNA replication in the presence of SSB. kð0Þ is the replication rate
at zero force in the absence of secondary structure previously
obtained from the fit of Eq. (8) to the experimental data on ssDNA
replication in the absence of SSB. xSSBðf Þ is the length of the ssDNA
in the presence of SSB per nucleotide at tension f , and it is deter-
mined previously by force-extension experiments. DGSSBðf Þ is the
Gibbs energy to release a nucleotide from SSB at tension f , it is
determined by the comparison of the integrals above the ssDNA-
SSB and the naked ssDNA force extension curves [xSSBðf Þ and
xssðf Þ, respectively]. A study of different polymerase-SSB pairs
[17] found similar values of d, pointing to a similar conformational
change, but different pairing energies, DGint , indicating different
stability of the collaboration state. Fig. 4A (red line) shows the fit
of Eq. (11) to the force dependence replication rate of the poly-
merase Polc replicating a ssDNA covered by mtSSB.

Overall, modelling of the effect of mechanical tension on the
DNA replication rate in the presence of ligands (SSBs) revealed that
elimination of template secondary structure by SSB binding pro-
moted the maximum replication rate of DNA polymerases. How-
ever, for this stimulation to occur functional interactions
between DNA polymerase and the SSB are required. These interac-
tions, i.e., electrostatic repulsion, decrease the energy barrier of
ssDNA unwrapping from the SSB and facilitate its release from
the template without compromising the replication rate of the
DNA polymerase.

3.3. Strand displacement DNA replication and DNA unwinding models

Some replicative DNA polymerases carry out strand displace-
ment DNA synthesis, which is the ability to displace downstream
dsDNA encountered during replication (Fig. 5A, B). Current strand
displacement replication models mainly describe how the stability
of the dsDNA fork ahead of the polymerase slow down the maxi-
mum replication rate of the enzyme (in the absence of fork)
[8,47]. The main idea is that replication cannot proceed at tension
f if the next base pair is closed, which, at tension f, happens with
probability P0 l;m ¼ 0; fð Þ, where l is the template position of the
polymerase and m the number of base pairs of the fork opened
ahead. Averaging over the complete template gives

Vsd fð Þ
Vpe fð Þ ¼ 1� 1

L

PL�1
l¼0 P0 l;m ¼ 0; fð Þ : ð12Þ

This probability is given by a balance of the Gibbs energy con-
tributions involved in the fork opening

P0 l;m; fð Þ ¼
exp �DG l;m;fð Þ

kBT

h i
Zðl;f Þ ;

ð13Þ

with Zðl; f Þ ¼ PL�l
m¼0 exp � DG l;m;fð Þ

kBT

h i
. The Gibbs energy required to

open m base pairs ahead of position l, at force f , is given by

DG l;m; fð Þ ¼
XL

i¼lþ1þm
DGbp ið Þ � 2m

Z f

0
xss f

0� �
df

0

þ M �min m;Mð Þ½ � � DGd: ð14Þ
The first term accounts for the stability of the base pairs ahead,

DGbpðiÞ � 2� 3 kBT [105]. The second term accounts for the tension
destabilization contribution, which is computed from the ssDNA
elasticity xssðf Þ. The third term accounts for the interaction energy
between the polymerase and the dsDNA fork. The polymerase is
assumed to destabilize theM closer base pairs ahead by an amount
DGd each. These are the two free parameters in the model. DGd

parameterizes the activity of the polymerase (Fig. 5C) [8,60,59],
andM, which parameterizes the range of fork destabilization. Large
values of M should be interpreted with caution. They might be
induced by the simplifying assumption in the model that the
destabilization energy is the same for all the M next base pairs.



Fig. 5. A) Diagram of a strand displacement DNA replication experiment with optical tweezers. (Left) The two ends of a DNA hairpin are attached between two micron-sized
beads (grey and blue spheres) one held by the optical trap and the other held by suction on top of a micropipette. Double parallel lines represent double stranded DNA
(dsDNA). (Right) During strand displacement conditions (s.d.), the DNA polymerase (purple triangle) opens the DNA fork, replicates one strand (blue line), and displaces the
other (red line). B) Scheme for the polymerase (purple triangle) dynamics during strand displacement DNA synthesis. L denotes the length in nucleotides of the DNA template,
l the number of nucleotides replicated, m the number of base pairs opened between the polymerase and the DNA fork, while M stands from the number of base pairs that are
destabilized by the polymerase (purple circle). All variables used in the strand displacement replication model are described in Section 3.3. (Adapted from [69].) C) DNA
polymerases with high fork destabilization energies, DGd , would present s.d. rates Vsd similar to those found during primer extension Vpe (red line). On the contrary, DNA
polymerases with low DGd present lower Vsd=Vpe ratios with stronger force dependencies (green dashed dotted line). (For all linesM ¼ 1.) D) Variation of the force dependent
Vsd=Vpe ratio with the interaction range M. Higher M values yield stronger force dependencies. Different values of M can fit the same set of data with different interaction
intensities DGd . (Values of the lines in this panel are: DGd ¼ 2:8 kBT for M ¼ 1, DGd ¼ 2:0 kBT for M ¼ 2; DGd ¼ 1:6 kBT for M ¼ 4; DGd ¼ 1:5 kBT for M ¼ 8.) E) Helicases are
classified as active or passive according to their ability to destabilize the fork, parameterized by the interaction intensity DGd . They are optimally active when DGd is of the
order of the higher base pair binding energy DGGC . The coordinate operation of a polymerase and a helicase can increase the effective interaction intensity DGd . F) Helicase
with steps d larger than one require the simultaneous opening of d base pairs, implying a stronger tension dependence. (Active DGd ¼ 1:2 kBT , M ¼ 6; passive DGd ¼ 0.)
(Panels E and F are from [47].) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Assuming smaller destabilization energy for the more distant base
pairs seems reasonable but it opens the questions of how fast is
this decrease). See Fig. 5C, D, and E for further insight on the impli-
cations of the different values of the parameters DGd and M to the
Vsd=Vpe replication ratio.

Note that some effects that are detrimental for the primer
extension replication might not be present in the strand displace-
ment replication. For example, the formation of secondary struc-
ture is prevented by the presence of the fork, and we expect this
effect to be absent in the Vpeðf Þ used to compute the strand dis-
placement replication velocity Vsdðf Þ in Eq. (12). This description
of the Betterton and Julicher model adapted for DNA polymerases,
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Eqs. (12)-(14), considers that replication occurs one nucleotide at a
time and assumes that there is no significant back-stepping, k�–0,
(i.e., due to exonucleolysis), Fig. 5B. How to include these addi-
tional effects (and others) is discussed on Refs. [47,60].

Fits of the force and sequence dependencies of the strand dis-
placement rates of T4 and Phi29 DNA polymerases with this model
revealed the interaction energy of each polymerase with the fork,
DGd ¼ 1:6� 2 KBT respectively [59,69]. Interpretation of the
single-molecule data together with biochemical and structural
information on polymerase-DNA complexes suggested that the
ability of DNA polymerases to unwind DNA during replication
depends on two competing processes: On the one hand, binding
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and bending of the template strand by the DNA polymerase gener-
ates mechanical stress at the fork junction, which forces the sepa-
ration of the dsDNA strands. On the other hand, the
complementarity between the template and the displaced strands
generates a regression pressure on the enzyme that competes for
template binding, which prevents further polymerization and
shifts the equilibrium towards the exonuclease conformation.

Similarly, single-molecule manipulation experiments have
shown that the DNA unwinding rate of replicative DNA helicases
is strongly affected by the stability of the fork [47,55,60]. The effect
of fork stability on the unwinding rate can be explained using the
Betterton and Julicher model explained above. In fact, this model
was originally developed to quantify the effect of fork stability
on the unwinding rate of helicases [8,47]. The same schemes as
in Fig. 5A and B can be used for helicase, just accounting that the
helicase opens the fork but does not convert ssDNA into dsDNA.
Thus, the ratio between the DNA unwinding and translocation
rates is obtained just replacing V sd=Vpe by Vunwinding=Vtranslocation in
Eq. (12).

In fact this model was originally developed for helicases [8,47].
Quantification of the DNA destabilization energy by helicases using
this model is not straightforward because of the uncertainty of
helicase step size and the significant probability of backsliding
events. Helicases can have large backstepping k�–0. The effect of
varying the step size, d, is shown in Fig. 5F. Increasing the step size,
d, leads to stronger force dependence (Fig. 5F), as also does an
increase of the interaction range, M (Fig. 5D) (See Ref. [60] for a
more detailed discussion). In any case, the strong dependency of
the average unwinding rate of replicative helicases on DNA
sequence and mechanical tension (fork stability), suggest that,
when working in isolation, these enzymes present weak DNA
destabilization energies. Interestingly, helicases may need the
assistance of other partner proteins at the fork [59].

Ligands attached to dsDNA or to ssDNA can act as inhibitors or
activators of strand displacement DNA replication or DNA unwind-
ing. On the inhibitory side, ligands might represent a barrier if
attached to dsDNA stabilizing it and preventing the fork opening.
In this case, their effects must be accounted in the base pair stabil-
ity term, DGbp, in the model presented in Subsection 3.3. Ligands
might also act as activators of the strand displacement replication,
lowering the effective base pair binding energy DGbp. Ligands
attached to the lagging ssDNA (as SSBs) can help fork opening, or
simply inhibit rezipping, effectively increasing the active opening
of the fork DGd. This inhibitory or activatory role of the ligand
can be force modulated through a force dependent transition, as
in primer extension, Eq. (10).
4. Conclusions

Dynamic biological processes such as DNA replication and DNA
unwinding are inherently stochastic processes. Single-molecule
manipulation and detection techniques allow researchers follow-
ing the progress of an individual molecule and measuring the
instantaneous rates and their fluctuations (such as pauses). These
fluctuations can provide detailed information about the underlying
kinetic and mechano-chemical cycle that governs the behavior of
the motor under study. Extracting this information from experi-
ments requires the ability to identify the pause states and their
proper quantification.

The data analysis methods presented here approach the analy-
sis of individual replication trajectories obtained with single-
molecule manipulation methods differently. The direct pause iden-
3775
tification approach is based on local analysis of the trajectory com-
paring the positions in a time interval to the positions in the
following time interval to identify steps and plateaus. Instead,
the velocity histogram introduces a more global approach, making
the histogram of local velocities, but for the whole trajectory. In
this method, the resolution of the two velocity peaks of the whole
trajectory allows us to optimize the local average time windows
(which filters high frequency noise) and the local velocity time
window. Similar comments apply to the first passage time distri-
bution analysis, which takes instead displacement windows. The
prominence method combines the local selection of the velocity
peaks by its prominence, with the invariance properties of the
velocity peak mean along the whole trajectory. These methods
combining local and global approaches extract reliable information
from noisy trajectories. The key is performing a proper accumula-
tion of small local evidences. Therefore, their philosophy is similar
to the Bayesian methods, but from a more phenomenological or
model independent approach (to a certain extent). We think there
is still room for improvements to trayectory data analysis with
new methods using phenomenological approaches. For example,
new methods may arise from the mathematical study of the com-
bination of quite general molecular motor models with the Baye-
sian approach. These mathematical developments could propose
improved estimators to extract the relevant biological magnitudes
from the trajectories (as the maximum replication velocity).

Models provide hypothesis of possible mechanisms for the DNA
replication process, and the effects of tension, coordination with
helicases, or the role of ligands as SSBs. The fit of the experimental
data to the models allows us to check these hypotheses and see
whether observations are compatible with the proposed mecha-
nism. New models allow to explore new potential mechanisms or
further details of the processes.

Further progress in the theory of binding of ligands to long poly-
mers is required to complete the understanding of the observed
multimode SSB binding to DNA [45,72,77] and mutual interaction
between SSB binding and DNA replication [72,17]. Although the
basis for the computation of the equilibrium coverage of ligands
bound to a long polymer has been stablished by Mc Ghee and
von Hippel, Ref. [61], there is still the need to develop a complete
theory for the mechanics, kinetics, and thermodynamics of these
systems. Mechanical models and simple kinetic and thermody-
namic models have already been developed for one and two modes
of binding [45]. However, recent results show that accurate
description of the binding process (at medium or high coverages)
requires a detailed count of the binding possibilities [100].

The analysis and modeling techniques described in this review
have proven to be useful for the interpretation of the activities of
replisome components when working in isolation (or in pairs)
and importantly, have set the stage for the analysis of replication
traces of fully reconstituted replisomes in the future. Analysis
and modeling of single-molecule manipulation data will evolve
hand by hand with the development of new methods that enable
increased resolution, multiplexing or access to measure multiple
variables of the system at the same time [40,20,2]. The methods
described in this document have been used or could be adapted
to study RNA polymerases [1,33,32,19,25,91] and other molecular
motors [98,90].
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[5] Bębenek A, Ziuzia-Graczyk I. Fidelity of DNA replication—a matter of
proofreading. Curr Genet 2018;64(5):985–96. https://doi.org/10.1007/
s00294-018-0820-1.

[6] Benkovic SJ, Valentine AM, Salinas F. Replisome-Mediated DNA Replication.
Annu Rev Biochem 2001;70(1):181–208. https://doi.org/10.1146/annurev.
biochem.70.1.181.

[7] Berman AJ, Kamtekar S, Goodman JL, Lázaro JM, de Vega M, Blanco L, et al.
Structures of phi29 DNA polymerase complexed with substrate: the
mechanism of translocation in B-family polymerases. EMBO J 2007;26
(14):3494–505. https://doi.org/10.1038/sj.emboj.7601780.

[8] Betterton M, Jülicher F. Opening of nucleic-acid double strands by helicases:
Active versus passive opening. Phys Rev E 2005;71(1):. https://doi.org/
10.1103/PhysRevE.72.029906029906.

[9] Bosco A, Camunas-Soler J, Ritort F. Elastic properties and secondary structure
formation of single-stranded DNA at monovalent and divalent salt conditions.
Nucleic Acids Res 2014;42(3):2064–74. https://doi.org/10.1093/nar/gkt1089.

[10] Burgers PMJ, Kunkel TA. Eukaryotic DNA Replication Fork. Annu Rev Biochem
2017;86(1):417–38. https://doi.org/10.1146/annurev-biochem-061516-
044709.

[11] Burnham DR, Kose HB, Hoyle RB, Yardimci H. The mechanism of DNA
unwinding by the eukaryotic replicative helicase. Nat Commun 2019;10
(1):2159. https://doi.org/10.1038/s41467-019-09896-2.

[12] Burnham KP, Anderson DR. Model Selection and Inference. Model Select Infer
1998. https://doi.org/10.1007/978-1-4757-2917-7. Springer, New York, New
York, NY.

[13] Bustamante C, Keller D, Oster G. The Physics of Molecular Motors. Acc Chem
Res 2001;34(6):412–20. https://doi.org/10.1021/ar0001719.

[14] Camunas-Soler J, Ribezzi-Crivellari M, Ritort F. Elastic Properties of Nucleic
Acids by Single-Molecule Force Spectroscopy. Annu Rev Biophys 2016;45
(1):65–84. https://doi.org/10.1146/annurev-biophys-062215-011158.

[15] Canceill D, Viguera E, Ehrlich SD. Replication Slippage of Different DNA
Polymerases Is Inversely Related to Their Strand Displacement Efficiency. J
Biol Chem 1999;274(39):27481–90. https://doi.org/10.1074/
jbc.274.39.27481.

[16] Carter BC, Vershinin M, Gross SP. A Comparison of Step-Detection Methods:
How Well Can You Do?. Biophys J 2008;94(1):306–19. https://doi.org/
10.1529/biophysj.107.110601.

[17] Cerrón F, De Lorenzo S, Lemishko KM, Ciesielski GL, Kaguni LS, Cao FJ, et al.
Replicative DNA polymerases promote active displacement of SSB proteins
during lagging strand synthesis. Nucleic Acids Res 2019;47(11):5723–34.
https://doi.org/10.1093/nar/gkz249.

[18] Chemla YR, Moffitt JR, Bustamante C. Exact Solutions for Kinetic Models of
Macromolecular Dynamics y. J Phys Chem B 2008;112(19):6025–44. https://
doi.org/10.1021/jp076153r.

[19] Cheng W, Arunajadai SG, Moffitt JR, Tinoco I, Bustamante C. Single-Base Pair
Unwinding and Asynchronous RNA Release by the Hepatitis C Virus NS3
Helicase. Science 2011;333(6050):1746–9. https://doi.org/
10.1126/science.1206023.
3776
[20] Chuang C-Y, Zammit M, Whitmore ML, Comstock MJ. Combined High-
Resolution Optical Tweezers and Multicolor Single-Molecule Fluorescence
with an Automated Single-Molecule Assembly Line. J Phys Chem A 2019;123
(44):9612–20. https://doi.org/10.1021/acs.jpca.9b08282.

[21] Czerwinski F, Richardson AC, Oddershede LB. Quantifying noise in optical
tweezers by allan variance. Opt Express 2009;17(15):13255–69. https://doi.
org/10.1364/oe.17.013255.

[22] Depken M, Galburt EA, Grill SW. The Origin of Short Transcriptional Pauses.
Biophys J 2009;96(6):2189–93. https://doi.org/10.1016/j.bpj.2008.12.3918.

[23] Desai VP, Frank F, Lee A, Righini M, Lancaster L, Noller HF, et al. Co-temporal
Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift
Mechanism of Translation Regulation by Structured mRNAs. Mol Cell
2019;75(5):1007–1019.e5. https://doi.org/10.1016/j.molcel.2019.07.024.

[24] Douglas J, Kingston R, Drummond AJ. Bayesian inference and comparison of
stochastic transcription elongation models. PLoS Comput Biol 2020;16
(2):1–21. https://doi.org/10.1371/journal.pcbi.1006717.

[25] Dulin D, Arnold JJ, van Laar T, Oh H-S, Lee C, Perkins AL, et al. Signatures of
Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase
Revealed Using High-Throughput Magnetic Tweezers. Cell Reports 2017;21
(4):1063–76. https://doi.org/10.1016/j.celrep.2017.10.005.

[26] Dulin D, Lipfert J, Moolman MC, Dekker NH. Studying genomic processes at
the single-molecule level: introducing the tools and applications. Nat Rev
Genet 2013;14(1):9–22. https://doi.org/10.1038/nrg3316.

[27] Dulin D, Vilfan ID, Berghuis BA, Hage S, Bamford DH, Poranen MM, et al.
Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent
RNA Polymerase. Cell Reports 2015;10(6):983–92. https://doi.org/10.1016/j.
celrep.2015.01.031.

[28] Eddy SR. What is a hidden Markov model?. Nat Biotechnol 2004;22
(10):1315–6. https://doi.org/10.1038/nbt1004-1315.

[29] El Beheiry M, Türkcan S, Richly MU, Triller A, Alexandrou A, Dahan M, et al. A
Primer on the Bayesian Approach to High-Density Single-Molecule
Trajectories Analysis. Biophys J 2016;110(6):1209–15. https://doi.org/
10.1016/j.bpj.2016.01.018.

[30] Elting MW, Spudich JA. Future Challenges in Single-Molecule Fluorescence
and Laser Trap Approaches to Studies of Molecular Motors. Dev Cell 2012;23
(6):1084–91. https://doi.org/10.1016/j.devcel.2012.10.002.

[31] Flynn RL, Zou L. Oligonucleotide/oligosaccharide-binding fold proteins: a
growing family of genome guardians. Crit Rev Biochem Mol Biol 2010;45
(4):266–75. https://doi.org/10.3109/10409238.2010.488216.

[32] Galburt EA, Grill SW, Bustamante C. Single molecule transcription elongation.
Methods 2009;48(4):323–32. https://doi.org/10.1016/j.ymeth.2009.04.021.

[33] Galburt EA, Grill SW, Wiedmann A, Lubkowska L, Choy J, Nogales E, et al.
Backtracking determines the force sensitivity of RNAP II in a factor-
dependent manner. Nature 2007;446(7137):820–3. https://doi.org/
10.1038/nature05701.

[34] Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, et al. Structures and operating
principles of the replisome. Science 2019;363(6429):eaav7003. https://doi.
org/10.1126/science.aav7003.

[35] Gittes F, Schmidt CF. Signals and noise in micromechanical measurements.
Methods Cell Biol 1998;55(55):129–56. https://doi.org/10.1016/s0091-679x
(08)60406-9.

[36] Goel A, Frank-Kamenetskii MD, Ellenberger T, Herschbach D. Tuning DNA
‘‘strings”: modulating the rate of DNA replication with mechanical tension.
PNAS 2001;98(15):8485–9. https://doi.org/10.1073/pnas.151261198.

[37] Gollnick B. Optical and Magnetic Tweezers for Applications in Single-
Molecule Biophysics and Nanotechnology. Universidad Autónoma de
Madrid; 2014.

[38] Hacker KJ, Alberts BM. The rapid dissociation of the T4 DNA polymerase
holoenzyme when stopped by a DNA hairpin helix. A model for polymerase
release following the termination of each Okazaki fragment. J Biol Chem
1994;269(39):24221–8. https://doi.org/10.1016/S0021-9258(19)51071-7.

[39] Hamdan SM, Richardson CC. Motors, Switches, and Contacts in the Replisome.
Annu Rev Biochem 2009;78(1):205–43. https://doi.org/10.1146/annurev.
biochem.78.072407.103248.

[40] Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, et al. STED
nanoscopy combined with optical tweezers reveals protein dynamics on
densely covered DNA. Nat Methods 2013;10(9):910–6. https://doi.org/
10.1038/nmeth.2599.

[41] Hoekstra TP, Depken M, Lin S-N, Cabanas-Danés J, Gross P, Dame RT, et al.
Switching between Exonucleolysis and Replication by T7 DNA Polymerase
Ensures High Fidelity. Biophys J 2017;112(4):575–83. https://doi.org/
10.1016/j.bpj.2016.12.044.

[42] Hua W, Young EC, Fleming ML, Gelles J. Coupling of kinesin steps to ATP
hydrolysis. Nature 1997;388(6640):390–3. https://doi.org/10.1038/41118.

[43] Ibarra B, Chemla YR, Plyasunov S, Smith SB, Lázaro JM, Salas M, et al.
Proofreading dynamics of a processive DNA polymerase. EMBO J 2009;28
(18):2794–802. https://doi.org/10.1038/emboj.2009.219.

[44] Jackson MB. Molecular and Cellular Biophysics. Cambridge: Cambridge
University Press; 2006.

[45] Jarillo J, Morín JA, Beltrán-Heredia E, Villaluenga JPG, Ibarra B, Cao FJ.
Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.
(M. S. Kellermayer, ed.). PLOS ONE 2017;12(4):. https://doi.org/10.1371/
journal.pone.0174830e0174830.

https://doi.org/10.1038/nature04268
https://doi.org/10.1038/s41467-020-18456-y
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1529/biophysj.103.039313
https://doi.org/10.1529/biophysj.103.039313
https://doi.org/10.1007/s00294-018-0820-1
https://doi.org/10.1007/s00294-018-0820-1
https://doi.org/10.1146/annurev.biochem.70.1.181
https://doi.org/10.1146/annurev.biochem.70.1.181
https://doi.org/10.1038/sj.emboj.7601780
https://doi.org/10.1103/PhysRevE.72.029906
https://doi.org/10.1103/PhysRevE.72.029906
https://doi.org/10.1093/nar/gkt1089
https://doi.org/10.1146/annurev-biochem-061516-044709
https://doi.org/10.1146/annurev-biochem-061516-044709
https://doi.org/10.1038/s41467-019-09896-2
https://doi.org/10.1007/978-1-4757-2917-7.Springer,NewYork,NewYork,NY
https://doi.org/10.1007/978-1-4757-2917-7.Springer,NewYork,NewYork,NY
https://doi.org/10.1021/ar0001719
https://doi.org/10.1146/annurev-biophys-062215-011158
https://doi.org/10.1074/jbc.274.39.27481
https://doi.org/10.1074/jbc.274.39.27481
https://doi.org/10.1529/biophysj.107.110601
https://doi.org/10.1529/biophysj.107.110601
https://doi.org/10.1093/nar/gkz249
https://doi.org/10.1021/jp076153r
https://doi.org/10.1021/jp076153r
https://doi.org/10.1126/science.1206023
https://doi.org/10.1126/science.1206023
https://doi.org/10.1021/acs.jpca.9b08282
https://doi.org/10.1364/oe.17.013255
https://doi.org/10.1364/oe.17.013255
https://doi.org/10.1016/j.bpj.2008.12.3918
https://doi.org/10.1016/j.molcel.2019.07.024
https://doi.org/10.1371/journal.pcbi.1006717
https://doi.org/10.1016/j.celrep.2017.10.005
https://doi.org/10.1038/nrg3316
https://doi.org/10.1016/j.celrep.2015.01.031
https://doi.org/10.1016/j.celrep.2015.01.031
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.1016/j.bpj.2016.01.018
https://doi.org/10.1016/j.bpj.2016.01.018
https://doi.org/10.1016/j.devcel.2012.10.002
https://doi.org/10.3109/10409238.2010.488216
https://doi.org/10.1016/j.ymeth.2009.04.021
https://doi.org/10.1038/nature05701
https://doi.org/10.1038/nature05701
https://doi.org/10.1126/science.aav7003
https://doi.org/10.1126/science.aav7003
https://doi.org/10.1016/s0091-679x(08)60406-9
https://doi.org/10.1016/s0091-679x(08)60406-9
https://doi.org/10.1073/pnas.151261198
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0185
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0185
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0185
https://doi.org/10.1016/S0021-9258(19)51071-7
https://doi.org/10.1146/annurev.biochem.78.072407.103248
https://doi.org/10.1146/annurev.biochem.78.072407.103248
https://doi.org/10.1038/nmeth.2599
https://doi.org/10.1038/nmeth.2599
https://doi.org/10.1016/j.bpj.2016.12.044
https://doi.org/10.1016/j.bpj.2016.12.044
https://doi.org/10.1038/41118
https://doi.org/10.1038/emboj.2009.219
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0220
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0220
https://doi.org/10.1371/journal.pone.0174830
https://doi.org/10.1371/journal.pone.0174830


J. Jarillo, B. Ibarra and Francisco Javier Cao-García Computational and Structural Biotechnology Journal 19 (2021) 3765–3778
[46] Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics
at the replication fork. Annu Rev Biochem 2005;74:283–315. https://doi.org/
10.1146/annurev.biochem.73.011303.073859.

[47] Johnson DS, Bai L, Smith BY, Patel SS, Wang MD. Single-Molecule Studies
Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase. Cell
2007;129(7):1299–309. https://doi.org/10.1016/j.cell.2007.04.038.

[48] Joo S, Chung BH, Lee M, Ha TH. Ring-shaped replicative helicase encircles
double-stranded DNA during unwinding. Nucleic Acids Res 2019;47
(21):11344–54. https://doi.org/10.1093/nar/gkz893.

[49] Kaguni LS, Clayton DA. Template-directed pausing in in vitro DNA synthesis
by DNA polymerase a from Drosophila melanogaster embryos. Proc Natl Acad
Sci 1982;79(4):983–7.

[50] Keller D, Bustamante C. The Mechanochemistry of Molecular Motors. Biophys
J 2000;78(2):541–56. https://doi.org/10.1016/S0006-3495(00)76615-X.

[51] Keller D, Swigon D, Bustamante C. Relating single-molecule measurements to
thermodynamics. Biophys J 2003;84(2 Pt 1):733–8. https://doi.org/10.1016/
S0006-3495(03)74892-9.

[52] Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M.
Assembly dynamics of microtubules at molecular resolution. (Supplementary
Methods: Step-fitting algorithm.). Nature 2006;442(7103):709–12.

[53] Kunkel TA, Bebenek K. DNA Replication Fidelity. Annu Rev Biochem 2000;69
(1):497–529. https://doi.org/10.1146/annurev.biochem.69.1.497.

[54] Liao JC, Spudich JA, Parker D, Delp SL. Extending the absorbing boundary
method to fit dwell-time distributions of molecular motors with complex
kinetic pathways. PNAS 2007;104(9):3171–6. https://doi.org/10.1073/
pnas.0611519104.

[55] Lionnet T, Spiering MM, Benkovic SJ, Bensimon D, Croquette V. Real-time
observation of bacteriophage T4 gp41 helicase reveals an unwinding
mechanism. PNAS 2007;104(50):19790–5. https://doi.org/10.1073/
pnas.0709793104.

[56] Lipfert J, Hao X, Dekker NH. Quantitative Modeling and Optimization of
Magnetic Tweezers. Biophys J 2009;96(12):5040–9. https://doi.org/10.1016/j.
bpj.2009.03.055.

[57] Maier B, Bensimon D, Croquette V. Replication by a single DNA polymerase of
a stretched single-stranded DNA. Proc Natl Acad Sci 2000;97(22):12002–7.
https://doi.org/10.1073/pnas.97.22.12002.

[58] Manosas M, Spiering MM, Ding F, Bensimon D, Allemand J-F, Benkovic SJ,
et al. Mechanism of strand displacement synthesis by DNA replicative
polymerases. Nucleic Acids Res 2012;40(13):6174–86. https://doi.org/
10.1093/nar/gks253.

[59] Manosas M, Spiering MM, Ding F, Croquette V, Benkovic SJ. Collaborative
coupling between polymerase and helicase for leading-strand synthesis.
Nucleic Acids Res 2012;40(13):6187–98. https://doi.org/10.1093/nar/gks254.

[60] Manosas M, Xi XG, Bensimon D, Croquette V. Active and passive mechanisms
of helicases. Nucleic Acids Res 2010;38(16):5518–26. https://doi.org/
10.1093/nar/gkq273.

[61] McGhee JD, von Hippel PH. Theoretical aspects of DNA-protein interactions:
co-operative and non-co-operative binding of large ligands to a one-
dimensional homogeneous lattice. J Mol Biol 1974;86(2):469–89. https://
doi.org/10.1016/0022-2836(74)90031-x.

[62] Medagli B, Onesti S. Structure and Mechanism of Hexameric Helicases. In:
Spies M, editor. DNA Helicases and DNA Motor Proteins. New York,
NY: Springer-Verlag; 2013. p. 75–95. https://doi.org/10.1007/978-1-4614-
5037-5_4.

[63] Meselson M, Stahl FW. The replication of DNA in Escherichia coli. Proc Natl
Acad Sci 1958;44(7):671–82. https://doi.org/10.1073/pnas.44.7.671.

[64] Michaelis J, Muschielok A, Andrecka J, Kügel W, Moffitt JR. DNA based
molecular motors. Phys Life Rev 2009;6(4):250–66. https://doi.org/10.1016/
j.plrev.2009.09.001.

[65] Miller H, Zhou Z, Shepherd J, Wollman AJM, Leake MC. Single-molecule
techniques in biophysics: a review of the progress in methods and
applications. Rep Prog Phys 2018;81(2):. https://doi.org/10.1088/1361-
6633/aa8a02024601.

[66] Moffitt JR, Chemla YR, Bustamante C. Methods in Statistical Kinetics. In:
Walter NG, editor. Single Molecule Tools, Part B:Super-Resolution, Particle
Tracking, Multiparameter, and Force Based Methods. cop: Academic Press;
2010. p. 221–57. https://doi.org/10.1016/S0076-6879(10)75010-2.

[67] Moffitt JR, Chemla YR, Smith SB, Bustamante C. Recent Advances in Optical
Tweezers. Annu Rev Biochem 2008;77(1):205–28. https://doi.org/10.1146/
annurev.biochem.77.043007.090225.

[68] Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in
action, one molecule at a time. J Cell Biol 2017;216(1):41–51. https://doi.org/
10.1083/jcb.201610025.

[69] Morin JA, Cao FJ, Lazaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL,
et al. Active DNA unwinding dynamics during processive DNA replication.
Proc Natl Acad Sci 2012;109(21):8115–20. https://doi.org/10.1073/
pnas.1204759109.

[70] Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL,
et al. Mechano-chemical kinetics of DNA replication: identification of the
translocation step of a replicative DNA polymerase. Nucleic Acids Res
2015;43(7):3643–52. https://doi.org/10.1093/nar/gkv204.

[71] Morin JA, Cao FJ, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Manipulation
of single polymerase-DNA complexes: A mechanical view of DNA unwinding
during replication. Cell Cycle 2012;11(16):2967–8. https://doi.org/10.4161/
cc.21389.
3777
[72] Morin JA, Cerrón F, Jarillo J, Beltran-Heredia E, Ciesielski GL, Arias-Gonzalez
JR, et al. DNA synthesis determines the binding mode of the human
mitochondrial single-stranded DNA-binding protein. Nucleic Acids Res
2017;45(12):7237–48. https://doi.org/10.1093/nar/gkx395.

[73] Morin JA, Ibarra B, Cao FJ. Kinetic modeling of molecular motors: pause model
and parameter determination from single-molecule experiments. J Stat
Mech: Theory Exp 2016;2016(5):. https://doi.org/10.1088/1742-5468/2016/
05/054031054031.

[74] Müllner FE, Syed S, Selvin PR, Sigworth FJ. Improved hidden Markov models
for molecular motors, part 1: Basic theory. Biophys J 2010;99(11):3684–95.
https://doi.org/10.1016/j.bpj.2010.09.067.

[75] Myers TW, Romano LJ. Mechanism of stimulation of T7 DNA polymerase by
Escherichia coli single-stranded DNA binding protein (SSB). J Biol Chem
1988;263(32):17006–15. https://doi.org/10.1016/s0021-9258(18)37490-8.

[76] Nakai H, Richardson CC. The effect of the T7 and Escherichia coli DNA-binding
proteins at the replication fork of bacteriophage T7. J Biol Chem 1988;263
(20):9831–9. https://doi.org/10.1016/s0021-9258(19)81592-2.

[77] Naufer, M. N., M. Morse, G. B. Möller, J. McIsaac, I. Rouzina, P. J. Beuning, and
M. C. Williams. 2021. Multiprotein E. coli SSB-ssDNA complex shows both
stable binding and rapid dissociation due to interprotein interactions. Nucleic
acids research 49(3):1532–1549. 10.1093/nar/gkaa1267.

[78] Naufer MN, Murison DA, Rouzina I, Beuning PJ, Williams MC. Single-molecule
mechanochemical characterization of E. coli pol III core catalytic activity.
Protein Sci 2017;26(7):1413–26. https://doi.org/10.1002/pro.3152.

[79] Nong EX, DeVience SJ, Herschbach D. Minimalist model for force-dependent
DNA replication. Biophys J 2012;102(4):810–8. https://doi.org/10.1016/j.
bpj.2012.01.020.

[80] Oliveira MT, de Bovi Pontes C, Ciesielski GL. Roles of the mitochondrial
replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020;13
(1):. https://doi.org/10.1590/1678-4685-GMB-2019-0069e20190069.

[81] Ostrofet E, Papini FS, Dulin D. Correction-free force calibration for magnetic
tweezers experiments. Sci Rep 2018;8(1):15920. https://doi.org/10.1038/
s41598-018-34360-4.

[82] Pandey M, Patel SS. Helicase and polymerase move together close to the fork
junction and copy DNA in one-nucleotide steps. Cell Rep 2014;6(6):1129–38.
https://doi.org/10.1016/j.celrep.2014.02.025.

[83] Patel SS, Picha KM. Structure and Function of Hexameric Helicases. Annu Rev
Biochem 2000;69(1):651–97. https://doi.org/10.1146/annurev.
biochem.69.1.651.

[84] Qian H, Kou SC. Statistics and related topics in single-molecule biophysics.
Annu Rev Stat Appl 2014;1:465–92. https://doi.org/10.1146/annurev-
statistics-022513-115535.

[85] Rabiner LR. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proc IEEE 1989;77(2):257–86. https://doi.org/10.1109/
5.18626.

[86] Redner S. A Guide to First-Passage Processes. Cambridge University Press;
2001.

[87] Reyes-Lamothe R, Possoz C, Danilova O, Sherratt DJ. Independent Positioning
and Action of Escherichia coli Replisomes in Live Cells. Cell 2008;133
(1):90–102. https://doi.org/10.1016/j.cell.2008.01.044.

[88] Ribeck N, Kaplan DL, Bruck I, Saleh OA. DnaB helicase activity is modulated by
DNA geometry and force. Biophys J 2010;99(7):2170–9. https://doi.org/
10.1016/j.bpj.2010.07.039.

[89] Ribeck N, Saleh OA. DNA unwinding by ring-shaped T4 helicase gp41 is
hindered by tension on the occluded strand. PLoS ONE 2013;8(11):. https://
doi.org/10.1371/journal.pone.0079237e79237.

[90] Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA. Myosin-V
stepping kinetics: A molecular model for processivity. Proc Natl Acad Sci
2000;97(17):9482–6. https://doi.org/10.1073/pnas.97.17.9482.

[91] Righini M, Lee A, Cañari-Chumpitaz C, Lionberger T, Gabizon R, Coello Y, et al.
Full molecular trajectories of RNA polymerase at single base-pair resolution.
Proc Natl Acad Sci 2018;115(6):1286–91. https://doi.org/10.1073/
pnas.1719906115.

[92] Schwartz JJ, Quake SR. Single molecule measurement of the ‘‘speed limit” of
DNA polymerase. Proc Natl Acad Sci 2009;106(48):20294–9. https://doi.org/
10.1073/pnas.0907404106.

[93] Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an Organizer/
Mobilizer of Genome Maintenance Complexes. Crit Rev Biochem Mol Biol
2008;43(5):289–318. https://doi.org/10.1080/10409230802341296.

[94] Steitz TA. DNA Polymerases: Structural Diversity and Common Mechanisms. J
Biol Chem 1999;274(25):17395–8. https://doi.org/10.1074/jbc.274.25.17395.

[95] Sun B, Johnson DS, Patel G, Smith BY, Pandey M, Patel SS, et al. ATP-induced
helicase slippage reveals highly coordinated subunits. Nature 2011;478
(7367):132–5. https://doi.org/10.1038/nature10409.

[96] Sun B, Wang MD. Single-molecule perspectives on helicase mechanisms and
functions. Crit Rev Biochem Mol Biol 2016;51(1):15–25. https://doi.org/
10.3109/10409238.2015.1102195.

[97] Suter, D. M., N. Molina, D. Gatfield, K. Schneider, U. Schibler, and F. Naef.
Mammalian genes are transcribed with widely different bursting kinetics.
Science (New York, N.Y.) 2011; 332(6028):472–4. 10.1126/science.1198817.

[98] Svoboda K, Schmidt CF, Schnapp BJ, Block SM. Direct observation of kinesin
stepping by optical trapping interferometry. Nature 1993;365(6448):721–7.
https://doi.org/10.1038/365721a0.

[99] Van Oijen AM, Loparo JJ. Single-molecule studies of the replisome. Annu Rev
Biophys 2010;39(1):429–48. https://doi.org/10.1146/annurev.
biophys.093008.131327.

https://doi.org/10.1146/annurev.biochem.73.011303.073859
https://doi.org/10.1146/annurev.biochem.73.011303.073859
https://doi.org/10.1016/j.cell.2007.04.038
https://doi.org/10.1093/nar/gkz893
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0245
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0245
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0245
https://doi.org/10.1016/S0006-3495(00)76615-X
https://doi.org/10.1016/S0006-3495(03)74892-9
https://doi.org/10.1016/S0006-3495(03)74892-9
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0260
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0260
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0260
https://doi.org/10.1146/annurev.biochem.69.1.497
https://doi.org/10.1073/pnas.0611519104
https://doi.org/10.1073/pnas.0611519104
https://doi.org/10.1073/pnas.0709793104
https://doi.org/10.1073/pnas.0709793104
https://doi.org/10.1016/j.bpj.2009.03.055
https://doi.org/10.1016/j.bpj.2009.03.055
https://doi.org/10.1073/pnas.97.22.12002
https://doi.org/10.1093/nar/gks253
https://doi.org/10.1093/nar/gks253
https://doi.org/10.1093/nar/gks254
https://doi.org/10.1093/nar/gkq273
https://doi.org/10.1093/nar/gkq273
https://doi.org/10.1016/0022-2836(74)90031-x
https://doi.org/10.1016/0022-2836(74)90031-x
https://doi.org/10.1007/978-1-4614-5037-5_4
https://doi.org/10.1007/978-1-4614-5037-5_4
https://doi.org/10.1073/pnas.44.7.671
https://doi.org/10.1016/j.plrev.2009.09.001
https://doi.org/10.1016/j.plrev.2009.09.001
https://doi.org/10.1088/1361-6633/aa8a02
https://doi.org/10.1088/1361-6633/aa8a02
https://doi.org/10.1016/S0076-6879(10)75010-2
https://doi.org/10.1146/annurev.biochem.77.043007.090225
https://doi.org/10.1146/annurev.biochem.77.043007.090225
https://doi.org/10.1083/jcb.201610025
https://doi.org/10.1083/jcb.201610025
https://doi.org/10.1073/pnas.1204759109
https://doi.org/10.1073/pnas.1204759109
https://doi.org/10.1093/nar/gkv204
https://doi.org/10.4161/cc.21389
https://doi.org/10.4161/cc.21389
https://doi.org/10.1093/nar/gkx395
https://doi.org/10.1088/1742-5468/2016/05/054031
https://doi.org/10.1088/1742-5468/2016/05/054031
https://doi.org/10.1016/j.bpj.2010.09.067
https://doi.org/10.1016/s0021-9258(18)37490-8
https://doi.org/10.1016/s0021-9258(19)81592-2
https://doi.org/10.1002/pro.3152
https://doi.org/10.1016/j.bpj.2012.01.020
https://doi.org/10.1016/j.bpj.2012.01.020
https://doi.org/10.1590/1678-4685-GMB-2019-0069
https://doi.org/10.1038/s41598-018-34360-4
https://doi.org/10.1038/s41598-018-34360-4
https://doi.org/10.1016/j.celrep.2014.02.025
https://doi.org/10.1146/annurev.biochem.69.1.651
https://doi.org/10.1146/annurev.biochem.69.1.651
https://doi.org/10.1146/annurev-statistics-022513-115535
https://doi.org/10.1146/annurev-statistics-022513-115535
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0430
http://refhub.elsevier.com/S2001-0370(21)00270-1/h0430
https://doi.org/10.1016/j.cell.2008.01.044
https://doi.org/10.1016/j.bpj.2010.07.039
https://doi.org/10.1016/j.bpj.2010.07.039
https://doi.org/10.1371/journal.pone.0079237
https://doi.org/10.1371/journal.pone.0079237
https://doi.org/10.1073/pnas.97.17.9482
https://doi.org/10.1073/pnas.1719906115
https://doi.org/10.1073/pnas.1719906115
https://doi.org/10.1073/pnas.0907404106
https://doi.org/10.1073/pnas.0907404106
https://doi.org/10.1080/10409230802341296
https://doi.org/10.1074/jbc.274.25.17395
https://doi.org/10.1038/nature10409
https://doi.org/10.3109/10409238.2015.1102195
https://doi.org/10.3109/10409238.2015.1102195
https://doi.org/10.1038/365721a0
https://doi.org/10.1146/annurev.biophys.093008.131327
https://doi.org/10.1146/annurev.biophys.093008.131327


J. Jarillo, B. Ibarra and Francisco Javier Cao-García Computational and Structural Biotechnology Journal 19 (2021) 3765–3778
[100] Villaluenga JPG, Vidal J, Cao-García FJ. Noncooperative thermodynamics and
kinetic models of ligand binding to polymers: Connecting McGhee–von
Hippel model with the Tonks gas model. Phys Rev E 2020;102(1):. https://doi.
org/10.1103/PhysRevE.102.012407012407.

[101] Walcott S. The load dependence of rate constants. J Chem Phys 2008;128
(21):1–10. https://doi.org/10.1063/1.2920475.

[102] Wang J, Sattar AKMA, Wang CC, Karam JD, Konigsberg WH, Steitz TA. Crystal
Structure of a pol a Family Replication DNA Polymerase from Bacteriophage
RB69. Cell 1997;89(7):1087–99. https://doi.org/10.1016/S0092-8674(00)
80296-2.
3778
[103] Wen J-D, Lancaster L, Hodges C, Zeri A-C, Yoshimura SH, Noller HF, et al.
Following translation by single ribosomes one codon at a time. Nature
2008;452(7187):598–603. https://doi.org/10.1038/nature06716.

[104] Wuite GJL, Smith SB, Young M, Keller D, Bustamante C. Single-molecule
studies of the effect of template tension on T7 DNA polymerase activity.
Nature 2000;404(6773):103–6. https://doi.org/10.1038/35003614.

[105] Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-
pairing contributions into thermal stability of the DNA double helix. Nucleic
Acids Res 2006;34(2):564–74. https://doi.org/10.1093/nar/gkj454.

https://doi.org/10.1103/PhysRevE.102.012407
https://doi.org/10.1103/PhysRevE.102.012407
https://doi.org/10.1063/1.2920475
https://doi.org/10.1016/S0092-8674(00)80296-2
https://doi.org/10.1016/S0092-8674(00)80296-2
https://doi.org/10.1038/nature06716
https://doi.org/10.1038/35003614
https://doi.org/10.1093/nar/gkj454

	DNA replication: In vitro single-molecule manipulation data analysis and models
	1 Introduction
	2 Data analysis
	2.1 Direct identification of pauses
	2.2 Velocity histogram
	2.3 First passage time distribution
	2.4 Prominence method
	2.5 Bayesian methods

	3 DNA replication models
	3.1 Pause modelling
	3.2 Primer extension DNA replication models
	3.2.1 Effects of DNA ligands on primer extension replication

	3.3 Strand displacement DNA replication and DNA unwinding models

	4 Conclusions
	Author contributions
	Declaration of Competing Interest
	Acknowledgements
	References


