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Ligands change the chemical and mechanical properties of polymers. In particular, single strand binding
protein (SSB) non-specifically bounds to single-stranded DNA (ssDNA), modifying the ssDNA stiffness and
the DNA replication rate, as recently measured with single-molecule techniques. SSB is a large ligand pre-
senting cooperativity in some of its binding modes. We aim to develop an accurate kinetic model for the
cooperative binding kinetics of large ligands. Cooperativity accounts for the changes in the affinity of a
ligand to the polymer due to the presence of another bound ligand. Large ligands, attaching to several
binding sites, require a detailed counting of the available binding possibilities. This counting has been
done by McGhee and von Hippel to obtain the equilibrium state of the ligands-polymer complex. The
same procedure allows to obtain the kinetic equations for the cooperative binding of ligands to long poly-
mers, for all ligand sizes. Here, we also derive approximate cooperative kinetic equations in the large
ligand limit, at the leading and next-to-leading orders. We found cooperativity is negligible at the
leading-order, and appears at the next-to-leading order. Positive cooperativity (increased affinity) can
be originated by increased binding affinity or by decreased release affinity, implying different kinetics.
Nevertheless, the equilibrium state is independent of the origin of cooperativity and only depends on
the overall increase in affinity. Next-to-leading approximation is found to be accurate, particularly for
small cooperativity. These results allow to understand and characterize relevant ligand binding pro-
cesses, as the binding kinetics of SSB to ssDNA, which has been reported to affect the DNA replication rate
for several SSB-polymerase pairs.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Understanding the kinetics of binding of large ligands to long
polymers is a very relevant biological problem. The ligand binding
to polymers changes their mechanical and chemical properties,
plays a relevant role regulating biological functions, shrinks or
expands the binding regions of the polymer (by stiffening these
regions) and passivates polymer regions for the binding of other
units of the ligand, among other effects. The binding may be speci-
fic or non-specific depending on whether the ligand binds to the
polymer with or without sequence preference. The binding is
specific between a basic polypeptide and a polynucleotide, and
between an oppositely charged ionic surfactant and a linear poly-
electrolyte, among other systems. One of the more attractive prob-
lems when the binding is specific involves protein molecules as
ligand and DNA as polymer [1–13,43].
Some ligands bind to few sites, such as Thiocoraline binding to
dsDNA (double-stranded DNA), human polymerase b binding to
ssDNA (single-stranded DNA), binding of lysozyme to chitosans
[14–16]. In contrast, there are relevant cases where the ligand is
large and binds to many monomers, like E. Coli and human mito-
chondrial SSB that bind 30–70 nucleotides of ssDNA [2,5,17]. These
ligand bindings have relevant implications, as degrade the polymer
(chitosans) or stimulate DNA replication [10,18].

There are relevant systems that exhibit either attractive or
repulsive interactions between bound ligands (cooperativity),
which perturb the binding process. They include: The binding of
ionic surfactants to the charged linear polyelectrolyte changing
its physical and chemical properties [19]. The binding of lyso-
zyme to chitosans mediating its degradation [14]. The binding
of a variety of proteins and intercalating agents to nucleic acids,
relevant for their maintenance [1,9,17,20–25]. In particular, a
binding mode of E. Coli SSB to DNA relevant for DNA replication
[1–2,26]. In contrast, there are systems in which the ligands do
not have mutual interactions (non-cooperative binding), like the
binding of oligolisines to nucleic acids, mono- and multivalent
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ions to polyelectrolytes, or polypeptides to polynucleotides;
which change the polymer physical and chemical properties
[27–29]. Here, we generalize a non-cooperative kinetic model to
the cooperative case.

Single-molecule measurements allow very detailed tracking of
binding processes, calling for more accurate models. In particular,
recently, the binding equilibrium and kinetics of human mito-
chondrial and E. Coli SSBs to ssDNA have been studied using opti-
cal tweezers [5,26]. As SSB is one of the main components of the
replisome, the characterization of the SSB to ssDNA is key to
understanding the DNA replication [10]. These studies call for
accurate kinetic models for high coverage situations. Although
the equilibrium for binding large ligands to long polymers has
been studied in detail, it is not the case for the kinetics, as dis-
cussed below.

The equilibrium state of large ligands bound to macromolecules
has been addressed in detail. Many equilibrium models are per-
formed in the framework of statistical mechanical lattice models.
In this type of models, the macromolecule is commonly considered
as a one-dimensional lattice with a given number of potential
binding sites (homogeneously or heterogeneously distributed),
and constituted by elementary units (e.g., monomers for polymer,
basepairs for DNA), and any bound ligand molecule occupies a cer-
tain number of elementary units. Several methods of constructing
lattice models of ligand binding to macromolecules have been for-
mulated. There are combinatorial methods that use binomial for-
mulae to derive analytical expressions for the numbers of
possible rearrangements of ligands along the macromolecule
[16,23,19–21,30–32]. In other type of methods, the system is char-
acterized by a mathematical expression related to the partition
function. The elementary units of the macromolecule are associ-
ated with different states (e.g., bound/unbound). The states of the
whole system can be calculated as different combinations of states
of the elementary units. The binding probabilities calculated for
the lattice models are then equal to the fraction of molecules in a
given state within the statistical ensemble consisting of many
identical systems. In a statistical ensemble, each state of the sys-
tem is characterized by a weight. The partition function is equal
to the sum of the weights of all possible states [24,33–35]. The
transfer matrix method is based on the construction of transfer
matrices for each elementary unit, whose elements contain the
probabilities to find the lattice unit in a given state [24,36,37].

These equilibrium studies can be extended to kinetics models
[38,39], using using the McGhee and von Hippel detailed binding
site counting procedure [30]. Recently, in Ref. [38], we clarified
the non-cooperative kinetic equation, equilibrium coverage
(McGhee and von Hippel result [30]) and its chemical potential
(which matches the Tonks gas chemical potential [40,41]). We also
showed the limited validity of a simple coarse-grained kinetic
model and of the ideal gas kinetics model [4], which are only valid
for low and very low coverages, respectively. Here, we derive the
cooperative binding kinetic equation, extending our approach
[38] to the cooperative case (where the ligand affinity is modified
by the presence of other ligands bound to the polymer), and deriv-
ing the approximate kinetic equations at the large ligand size limit
at the leading and next-to-leading order.

In Subsection II.A, we briefly summarize the main results of
the model for non-cooperative ligand binding [38]. In addition,
for non-cooperative binding, we compute the next to leading
order in the large ligand approximation (i.e., large number of
binding sites per ligand), which is useful for comparison with
the cooperative results. In Section II.B, we extend the model for
cooperative ligand binding. In section II.C, we extend the results
for the more general case in which the cooperativity can affect
both the binding and the release rates. Finally, Section III dis-
cusses the results.
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2. Ligand binding kinetic equation

We derive the kinetic equation for the binding of large ligands
to a long polymer using the procedure proposed by McGhee and
von Hippel to count the possible binding sites [30]. The polymer
is represented by a linear array of N identical binding sites, and
when the ligand molecule binds to the polymer covers m sites
(i.e., make inaccessible to another ligand). In addition, the polymer
is assumed to be infinitely long, i.e., N � m. The fraction of polymer
binding sites covered by the ligand is given by the coverage,
c ¼ nm=N, where n is the number of ligands bound to the polymer.
2.1. Non-cooperative binding

This subsection reviews previous results for non-cooperative
binding [30,38]. We additionally derive the next-to-leading order
in large ligand approximation (large m). All these results are useful
for comparison with the cooperative binding results presented in
the next subsections.

The kinetic equation describing the time variation in the num-
ber of ligands bound to the polymer is [38]

dn
dt

¼ kb nþ 1ð Þs� krn; ð1Þ

where s is the average number of free binding sites per gap,
nþ 1 the number of gaps, kb is the binding kinetic constant, and
kr is the release kinetic constant. The binding kinetic constant kb
generally depends on the free ligand concentration L, and usually
linearly kb ¼ KbL , where Kb represents the association constant.
A gap (of size g) is a set of g consecutive free ligand binding sites
(free lattice residues). Ligands cannot bind to gaps smaller than
its size, g < m.

Following the McGhee and von Hippel reasoning, the average
number of free binding sites per gap is

s ¼
XN

g¼m
g �mþ 1ð ÞPg ; ð2Þ

where Pg is the probability that any particular gap between two
bound ligands is exactly g free polymer residues long, which is
given by [30]

Pg ¼ 1� c
1� c þ c=m

� �g c=m
1� c þ c=m

� �
: ð3Þ

(See Appendix for the derivation). For an infinite polymer,
N ! 1, the average number of free ligand binding sites per poly-
mer [using Eqs. (2) and (3)] turns out to be

nþ 1ð Þs � ns ¼ N 1� cð Þ 1� c
1� c þ c=m

� �m�1

; ð4Þ

where we have assumed that nþ 1ð Þ � n (reasonable for an infi-
nite polymer). This result allows to write the kinetic equation in
terms of the coverage as

dc
dt

¼ kbm 1� cð Þ 1� c
1� c þ c=m

� �m�1

� krc: ð5Þ

This equation implies that, if we start with a naked polymer, the
coverage will increase until it reaches an equilibrium value where
the binding and release terms balance each other. See Fig. 1(Left).
The equilibrium coverage can be obtained numerically from Eq.
(5) imposing dc=dt ¼ 0. It is found that it increases as a function
of the ratio between the binding and release rates, K ¼ kb=kr . See
Fig. 2. On the other hand, the dissociation kinetics is modelled
using Eq. (5) by setting kb ¼ 0 (simulating setting the ligand con-



Fig. 1. Attachment and detachment kinetics. Polymer coverage as a function of time compared for non-cooperative (x ¼ 1) and cooperative (x–1) cases. (Left) Starting with a
naked polymer, ligands binding to m = 30 sites, binding rate kb = 0.8 s�1, and release rate kr = 0.06 s�1. (Typical values of SSB binding to ssDNA [5,10,12]). (Right) Starting with
the previous equilibrium coverages the detachment dynamics is induced setting kb ¼ 0, simulating setting ligand concentration in solution to zero. The non-cooperative
(x = 1) dynamics is computed from Eq. (5). The cooperative (attractive x = 10, and repulsive x = 0.1) dynamics are computed from Eq. (20), and from Eq. (40) for the extreme
cases of cooperativity only affecting the binding (a = 1) or only affecting the release ða ¼ 0). The activation state parameter a measures the impact of cooperativity on the
activation energy of the binding process, as introduced below in Eq. (31) of Section II.C.

Fig. 2. Equilibrium coverage as a function of the ratio of the binding and release
rates, K ¼ kb=kr, compared for the non-cooperative and cooperative cases for a
ligand binding to m = 30 sites. The non-cooperative (x = 1) equilibrium is computed
from the stationary state of Eq. (5), while the cooperative (attractive x = 10, and
repulsive x = 0.1) equilibria are computed from the stationary state of Eq. (20).
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centration in solution to zero). Fig. 1(Right) shows the dissociation
kinetics starting with a polymer occupied with the corresponding
equilibrium state coverage in each case.

2.1.1. Small ligand binding
2.1.1.1. Single binding ligand (m = 1). When the ligand binds to a
single site the kinetic equation, Eq. (5), simplifies to

dc
dt

¼ kb 1� cð Þ � krc: ð6Þ

The first term provides a coverage increase proportional to the
non-covered fraction of the polymer, and the second term
decreases the coverage proportionally to the coverage. This results
in an equilibrium coverage, ceq, obtained for dc=dt ¼ 0;

K ¼ ceq
1� ceq

; ð7Þ

or more explicitly,

ceq ¼ kb
kb þ kr

¼ K
1þ K

¼ 1
1þ 1

K

¼ 1� 1
1þ K

; ð8Þ
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where the different ways of expressing the result are useful for
comparison with other results. Please, note that Eq. (8) is equiva-
lent to classical Langmuir absorption model [42].

2.1.2. Large ligand binding (m � 1)
There are relevant cases where the ligand is large and binds to

many binding sites, like E. Coli and human mitochondrial SSB that
bind 30–70 nucleotides of ssDNA [2,5,17]. For applications to these
cases, the large ligand approximation is useful, m � 1, which
accounts to consider that the ligand binds to many binding sites,
further simplifying the kinetic equations.

2.1.2.1. Leading order for large ligands (m � 1). At leading order in
the large m limit

1� c
1� c þ c=m

� �m�1

’ exp
�c

1� c

� �
: ð9Þ

Then, the kinetic equation becomes

dc
dt

¼ kbm 1� cð Þ exp �c
1� c

� �
� krc; ð10Þ

which shows that the binding is inhibited by the additional
exponential factor (not present in the m ¼ 1 case). This factor
accounts for the reduction in available binding possibilities, due
to the random location of the large ligands that decrease the gaps
of size greater than m.

The previous kinetic equation leads to the equilibrium coverage,
ceq,

ln Kmð Þ ¼ ln
ceq

1� ceq

� �
þ ceq
1� ceq

; ð11Þ

or equivalently,

ceq ¼ W mKð Þ
1þW mKð Þ ¼

1
1þ 1

W mKð Þ
¼ 1� 1

1þW mKð Þ ; ð12Þ

whereW(z) is the so-called Lambert function, which is the solu-
tion of the equation WeW ¼ z, where z is a complex number. As
Lambert function is an increasing function on its argument, this
implies that coverage increases for increasing binding modem pro-
vide the ligand K (affinity) stays constant. See Fig. 3. While if the
affinity is per site, we have that the affinity for the mode m, Km,
is related to the affinity of the mode m ¼ 1, K1, by Km ¼ Km

1 . In this



Fig. 3. Comparison of exact and large m approximation results. (Left) Equilibrium coverages as a function of the ligand size m. (Right) Relative error isolines of the next-to-
leading order in the large m approximation. The results for the non-cooperative case are computed from the stationary state of Eq. (5) (x = 1, non-cooperative), Eq. (14) (x = 1,
next-to-leading), and Eq. (10) (x = 1, leading). The results for the cooperative cases (x = 5 and x = 2) are computed from the stationary state of Eq. (40), and their next-to-
leading approach from Eq. (53), while their leading approach would coincide with the non-cooperative leading approach results (x = 1, leading), as derived in the text. The
results in this figure are computed using K = 1.
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later case, the coverage increases with m, when K1 > 1 (as derived
from mþ 1ð ÞKmþ1

1 > mKm
1 in the largem limit, while decreases with

m, if K1 < 1) (See Fig. 4).

2.1.2.2. Next-to-leading-order for large ligands (m � 1). Improving
the approximation going to next-to-leading order in large m gives
a useful expression for later comparison. We have

1� c
1� c þ c=m

� �m�1

’ exp
�c

1� c

� �
1þ 2� cð Þc

2m 1� cð Þ2
 !

: ð13Þ

Then, the kinetic equation for the coverage becomes

dc
dt

¼ kbm 1� cð Þ exp �c
1� c

� �
1þ 2� cð Þc

2m 1� cð Þ2
 !

� krc: ð14Þ

The equilibrium coverage ceq can be obtained from Eq. (14)
imposing dc=dt ¼ 0,
Fig. 4. Binding and release processes to isolated, singly contig
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ln Kmð Þ ¼ ln
ceq

1� ceq

� �
þ ceq
1� ceq

þ ln 1� 2� ceq
� �

ceq

2m 1� ceq
� �2

 !
: ð15Þ

The last term provides the next-to-leading order correction in
the 1/m expansion to the equilibrium coverage. We can compute
this correction perturbatively substituting in Eq. (15) the
expression

ceq ¼ c 0ð Þ
eq þ c 1ð Þ

eq

m
: ð16Þ

cð0Þeq is the solution for the kinetic equation in a non-cooperative

system at the leading order in largem, Eq. (11). cð1Þeq is the first-order
correction in 1=m, whose solution is

c 1ð Þ
eq ¼

2� c 0ð Þ
eq

� �
c 0ð Þ
eq

� �2
2

: ð17Þ

This leads to an equilibrium coverage of
uous (sc), and doubly contiguous (dc) sites (respectively).
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ceq ¼ 1� 1
1þW mKð Þ

� 	
� 1þ 1

2m
1� 1

1þW mKð Þ½ �2
( )" #

; ð18Þ

where the second bracket gives the next-to-leading order cor-
rection in the large m expansion. As the Lambert function is posi-
tive (for positive arguments) the next-to-leading order correction
increases the estimate of the equilibrium coverage in a relative
amount of the order 1=m.
2.2. Cooperative binding case

Cooperative effects are present in many systems, where the (di-
rect or indirect) interactions between ligands bound to the poly-
mer are non-negligible [33,36,22–24]. Cooperative effects are
known to be present in one of the two main binding modes of
E. Coli SSB to DNA [2,17].

To analyze the cooperative effects we follow here the McGhee
and von Hippel approach [30,38]. The interaction between ligands
is allowed between nearest neighbors when they are bound with-
out intervening free lattice residues. This restriction results in
three different types of ligand binding sites: (i) an isolated site to
which a ligand binds with a binding constant, kb; (ii) a singly con-
tiguous site to which a ligand binds with binding constant kb x;
and (iii) a doubly contiguous site to which a ligand binds with
binding constant kb x2 (see Fig. 4). The cooperativity parameter
x is the equilibrium constant for the process of moving a bound
ligand from an isolated site to a singly contiguous site, or from a
singly contiguous site to a doubly contiguous site. (See Appendix).
For x > 1, the ligands attract each other, and the binding is posi-
tively cooperative; for x < 1, the ligands repel each other, and
the binding is negatively cooperative; for x = 1, the binding is
non-cooperative.

In a cooperative-ligand system, the kinetic equation describing
the time variation in the number of ligands bound to the polymer
can be written as

dn
dt

¼ kbn si þxssc þx2sdc
� �� krn; ð19Þ

where, as previously noted, we have assumed that nþ 1ð Þ � n
for an infinite polymer. We defined si as the average number of free
isolated binding sites per gap, ssc as the average number of free sin-
gly contiguous binding sites per gap, and sdc as the average number
of free doubly contiguous binding sites per gap. (See Appendix for
the derivation of the corresponding average number of sites). Fol-
lowing McGhee and von Hippel reasoning, the equation describing
the time variation in the coverage becomes

dc
dt

¼ kbm 1�cð Þ 2x�1ð Þ 1�cð Þþc=m�R
2 x�1ð Þ 1�cð Þ

� 	m�1 1�c�c=mþR
2 1�cð Þ

� �2

�krc;

ð20Þ
where the function R is defined as follows

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c � c=mð Þ2 þ 4x 1� cð Þc=m

q
: ð21Þ

It is noted that the Eq. (20) cannot be applied directly in the case
of non-cooperative binding because it diverges when the coopera-
tivity parameter equals unity. However, we verified that, using
L’Hôpital’s rule and the properties of limits, Eq. (20) becomes Eq.
(5) in the limit x ? 1, as expected.

Fig. 1 shows the evolution of the coverage in a cooperative-
ligand system, which has been calculated numerically using Eq.
(20) and compares it with the non-cooperative ligand system.
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2.2.1. Small ligand binding
2.2.1.1. Single binding ligand (m = 1). From Eq. (20), when m = 1 the
kinetic equation describing the time variation in the coverage turns
out to be

dc
dt

¼ kb 1� cð Þ 1� 2c þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c x� 1ð Þ 1� cð Þ þ 1

p
2 1� cð Þ

 !2

� krc; ð22Þ

where we see that increasing the cooperativity parameter x
increases the binding affinity of the ligand. The equilibrium cover-
ages can be obtained from Eq. (22), by imposing dc=dt ¼ 0, as

K ¼ 4ceqð1� ceqÞ
1� 2ceq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ceq x� 1ð Þ 1� ceq

� �þ 1
qh i2 ð23Þ

The equilibrium coverage equation for the non-cooperative
case, Eq. (7), is consistently recovered for x ¼ 1.

2.2.2. Large ligand binding (m � 1)
As previously commented, a large ligand can bind to many

binding sites (e.g., SSB to ssDNA). This enables us to approximate
the expression assumingm � 1, for the factors in Eq. (20). We have
that

2x� 1ð Þ 1� cð Þ þ c=m� R
2 x� 1ð Þ 1� cð Þ

� 	m�1

’ exp
�c

1� c

� �
1þ 2c x� 1ð Þ þ 2� cf gc

2m 1� cð Þ2
" #

; ð24Þ

and

1� c � c=mþ R
2 1� cð Þ

� �2

’ 1þ 2 x� 1ð Þc
m 1� cð Þ : ð25Þ

These approximations lead to an approximate kinetic equation
for the coverage with large ligands (large m)

dc
dt

¼ kbm 1� cð Þ exp �c
1� c

� �
1þ 2c x� 1ð Þ þ 2� cf gc

2m 1� cð Þ2
" #

1þ 2 x� 1ð Þc
m 1� cð Þ

� 	
� krc:

ð26Þ
2.2.2.1. Leading order for large ligands (m � 1). When only the lead-
ing order terms in large m are retained, the cooperative kinetic
equation [Eq. (26)] reduces to the non-cooperative leading order
equation, Eq. (10). This result implies that the equilibrium cover-
age is also the same at leading order in large m. Cooperative effects
are only present at next-to-leading order in large m. This indicates
that isolated binding sites are the dominant contribution for large
ligands.

2.2.2.2. Next-to-leading-order for large ligands (m � 1). We extend
here the previous results up to next-to-leading-order in large m.
We now conserve first-order terms in 1=m (and neglect higher
orders) to obtain from Eq. (26) the kinetic equation

dc
dt

¼ kbm 1� cð Þ exp �c
1� c

� �
1þ 2x� 1Þð2� cð Þc

2m 1� cð Þ2
" #

� krc: ð27Þ

For x ¼ 1, we consistently recover the analogous non-
cooperative result, Eq. (14). For x > 1, the cooperativity increases
the effective binding rate (first term of the right-hand side of the
equation), while for x < 1, the effective binding rate is reduced.

The equilibrium coverage is given by the stationary state of Eq.
(27) (i.e., dc=dt ¼ 0),
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ln Kmð Þ ¼ ln
ceq

1� ceq

� �
þ ceq
1� ceq

þ ln 1� 2x� 1ð Þ 2� ceq
� �

ceq

2m 1� ceq
� �2

 !
: ð28Þ

This equation gives the equilibrium coverage for cooperative

large ligands. We solve it perturbatively, using ceq ¼ c 0ð Þ
eq þ c 1ð Þ

eq =m,
and found

c 1ð Þ
eq ¼ c 0ð Þ

eq

� �2
2� c 0ð Þ

eq

� �
x� 1

2

� �
: ð29Þ

Thus, the coverage for cooperative large ligands is given by

ceq ¼ 1� 1
1þW mKð Þ

� 	

� 1þ 1
m

x� 1
2

� �
1� 1

1þW mKð Þ½ �2
( )" #

: ð30Þ

For x ¼ 1, the analogous non-cooperative equilibrium equa-
tions are recovered, Eq. (15), (17) and (18). Positive cooperativity
(x > 1) increases coverage, while negative cooperativity (x < 1)
decreases coverage, as Eq. (30) shows. This result is consistent with
the attractive effect of positive cooperativity because of the result-
ing increased effective binding energy. (The same argument in the
opposite direction holds for negative cooperativity.)

Fig. 3 compares thepreviousapproximations for equilibriumcov-
erage. Interestingly, the next-to-leading order is an excellent
approximation even for relatively low values of m. Fig. 3 illustrates
that positive cooperativity increases coverage. Note that, for inter-
mediate cooperativity strength (e.g.,x ¼ 2), coveragedecreasesfirst
and after increases as a function of the ligand bind sizem. This slope
change is due to the competition of two effects. On the one hand, in
the absence of cooperativity, the coverage growswith ligand sizem.
On the other hand, positive cooperativity (x > 1) increases the cov-
erage, thanks to the attractive interaction between ligands. How-
ever, this cooperativity-induced coverage increase is greater for
small ligands, as there aremorecooperative interactionsper covered
monomer (higher density of ligand–ligand interactions).

2.3. General cooperative case

In the previous subsection, we considered cooperative binding
and we implicitly assumed that the cooperativity only affected
the binding process. However, positive cooperativity can arrive
by an enhancement of the binding or by an inhibition of the release
(or even both). They correspond, respectively, to an increase in the
binding rate or a decrease in the release rate (for the neighbour
site). Analogously, negative cooperativity can arise as an inhibition
of the binding or an enhancement of the release. In this subsection,
we generalize the previous model to cooperative effects on both,
binding and release processes.

2.3.1. General kinetic equation
A more general kinetic equation can be derived considering that

cooperativity can affect the binding and release rates. Considering
the case of singly contiguous ligands, Arrhenius-type equations
were proposed for the binding kinetic constant, kb;sc , and the
release kinetic constant, kr;sc ,

kb;sc ¼ kbe
�aGx

kBT ; ð31Þ

kr;sc ¼ kre
1�að ÞGx
kBT ; ð32Þ

where Gx is the Gibbs free energy of interaction between adja-
cent ligands in the polymer. The parameter a, which is named as
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activation state parameter, measures the lowering of the energy
barrier between the binding process and the release process. Divid-
ing the kinetic constants, we obtain the equilibrium constant for
the processes

Ksc ¼ kb;sc
kr;sc

¼ kb
kr

e�
Gx
kBT ¼ Ke�

Gx
kBT : ð33Þ

Similarly, considering doubly contiguous ligands, the kinetic
constants are

kb;dc ¼ kbe
�2aGx

kBT ; ð34Þ

kr;dc ¼ kre
2 1�að ÞGx

kBT ; ð35Þ
and the corresponding equilibrium constant is written as

Kdc ¼ kb;dc
kr;dc

¼ kb
kr

e�
2Gx
kBT ¼ Ke�

2Gx
kBT : ð36Þ

Please, note that Eqs. (33) and (36) are equivalent to Gibbs free
energy isotherm equation. See Fig. 5 for examples of free energy
landscapes giving these rates and kinetic constant relations.

As we noted before, the cooperativity parameter x is the equi-
librium constant for the process of moving a bound ligand from an
isolated site to a singly contiguous site,

x ¼ Ksc

K
¼ e�

Gx
kBT : ð37Þ

This allows to restate all the equilibrium constants, and binding
and release rates for the cooperative kinetics in terms of their non-
cooperative analogs and the model parameters

Ksc ¼ Kx; Kdc ¼ Kx2;

kb;sc ¼ kbxa; kb;dc ¼ kbx2a;

kr;sc ¼ krxa�1; kr;dc ¼ krx2 a�1ð Þ:

ð38Þ

Hence, the time variation in the number of ligands bound to the
polymer (kinetic equation) is now given by

dn
dt

¼ kbn si þxassc þx2asdc
� �� krn li þxa�1lsc þx2 a�1ð Þldc

� �
;

ð39Þ
where we define li as the average fraction of isolated attached

ligands in the polymer, lsc as the average fraction of attached

ligands with a single contiguous ligand in the polymer, and ldc as
the average fraction of attached ligands with two contiguous
ligands in the polymer. (See Appendix for the derivation of the cor-
responding expressions) The first term of the right-hand side of Eq.
(39) is related to the ligand binding process to the polymer, while
the second term of the right-hand side is related to the ligand
releasing process.

After computing these average fractions (si; ssc; sdc; li; lsc; andldc,
see Appendix), we can express the kinetic equation [Eq. (39)] in
terms of the conditional probabilities,

dc
dt

¼ kbc
bmfð Þ ffð Þm�1

1� ffð Þ ffð Þ þxa 1� ffð Þð Þ½ �2
 !

� krc bmfð Þ þxa�1 1� bmfð Þð Þ� �2
: ð40Þ

The conditional probability ðff Þ is the probability that, when you
are in a free binding site, finding that the next binding site is also
free, while ðbmf Þ is the probability that, when you are in the bind-
ing site bound to the rightmost extreme of the ligand, the next
binding site is free. See Fig. 6. These two conditional probabilities
are related by



Fig. 5. Free energy landscapes for singly contiguous cooperative binding processes compared to the non-cooperative reaction potential. For cooperative binding, two cases
are shown, i.e., enhanced binding (a ¼ 1) and inhibited release (a ¼ 0). In both cases the free energy of the final state is decreased by an amount Gx . For enhanced binding
ða ¼ 1Þ the activation state also decreases its free energy by an amount Gx; thus, the energy barrier for the binding process is reduced, while the energy barrier for the release
process remains the same. For inhibited release (a ¼ 0) the free energy of the activation state does not change; thus, the energy barrier for the binding process is the same as
for the non-cooperative case, while the energy barrier for the release process is increased. Both cooperative cases have the same equilibria, as both have the same free energy
in the initial and final states, but they differ in the kinetics.

Fig. 6. Schematics of the conditional probabilities used to describe their distribution illustrated for the binding of n ¼ 3 ligands with binding mode m ¼ 2 bound to a chain of
N ¼ 10. Figure from Ref. [38].
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bmfð Þ ¼ ffð Þ
x� ffð Þ x� 1ð Þ ; ð41Þ

(see Appendix), and we have
ffð Þ ¼ 2x� 1ð Þ 1� cð Þ þ c=m� R
2 x� 1ð Þ 1� cð Þ ; ð42Þ

where R is given by
R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c � c=mð Þ2 þ 4x 1� cð Þc=m

q
: ð43Þ

[Please note that the denominator of Eq. (41) never becomes
zero, x� ffð Þ x� 1ð Þ ¼ x 1� ffð Þ½ � þ ffð Þ > 0. ðff Þ is a probability
between 0 and 1, and both terms never become zero simultane-
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ously. Also note that to recover the non-cooperative case from
Eq. (42) we have to follow the procedures described below Eq.
(21).]

The general kinetic equation is given by Eq. (40) with the mag-
nitudes given by Eqs. (41) to (43). The stationary state (dc=dt ¼ 0)
of the kinetic equation gives the equilibrium coverage relation

K ¼ 1�xð Þ ffð Þ þx½ � ffð Þm
1� ffð Þ ; ð44Þ

where ðff Þ is given by Eq. (42). This implicit expression can be
solved numerically to obtain the equilibrium coverage ceq. It is very
relevant to note that this result implies that the equilibrium cover-
age is independent of a, i.e., in the modification of the height of the
activation barrier for singly or doubly contiguous binding
processes.
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The kinetic of two cases is represented in Fig. 1. First, coopera-
tivity due to pure binding enhancement, which corresponds to
a ¼ 1 and recovers the results presented in previous subsection,
Subsection II.B. Second, cooperativity due to pure release inhibition
(a ¼ 0). Pure binding enhancement has a faster binding kinetics
(Fig. 1). Pure release inhibition starts with a coverage kinetics like
the non-cooperative case but continues to grow until it reaches the
same final equilibrium coverage, as the pure binding enhancement
case with the same cooperative free energy. See also Fig. 5 for a
schematic representation of the respective free energy landscapes.

2.3.2. Small ligand binding
2.3.2.1. Single binding ligand (m = 1). Form ¼ 1, the kinetic equation
[Eq. (40)] simplifies to

dc
dt

¼ kbc
b1fð Þ

1� ffð Þ ffð Þ þxa 1� ffð Þð Þ½ �2
� �

� krc b1fð Þ þxa�1 1� b1fð Þð Þ� �2
; ð45Þ

with the following conditional probabilities

bmfð Þ ¼ 2c � 1þ R
2 x� 1ð Þc ; ð46Þ

ffð Þ ¼ 2 x� 1ð Þ 1� cð Þ þ 1� R
2 x� 1ð Þ 1� cð Þ ; ð47Þ

where the function R is given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2cð Þ2 þ 4xc 1� cð Þ

q
: ð48Þ

Analogous equations with a different notation were derived and
compared with Monte Carlo simulation in Ref. [39].

The stationary state condition for the equilibrium coverage is
given in terms of the conditional probability ðff Þ, for m ¼ 1, as

K ¼ 1�xð Þ ffð Þ þx½ � ffð Þ
1� ffð Þ : ð49Þ

This implicit expression can be solved analytically to obtain the
equilibrium coverage ceq, as expressed by Eq. (23).

2.3.3. Large ligand binding (m � 1)
Under the assumption of a ligand binding to many binding sites,

m � 1, the first term of the right-hand side of the general kinetic
equation, Eq. (40), can be written as (See Appendix for derivation)

kbc
bmfð Þ ffð Þm�1

1� ffð Þ ffð Þ þxa 1� ffð Þð Þ½ �2
� �

¼

¼ kbm 1� cð Þ exp �c
1 � c

� �
1 þ c 4 1 � cð Þxa � 2 þ 2x þ 1ð Þc

2m 1 � cð Þ2
h i

;
ð50Þ

and the second term of the right-hand side of the Eq. (40) as

krc bmfð Þ þxa�1 1� bmfð Þð Þ� �2 ¼ krc 1� 2cx 1�xa�1
� �
m 1� cð Þ

� 	
: ð51Þ
2.3.3.1. Leading order in the large ligand expansion (m � 1). If only
the leading-order (m � 1) contributions are retained from Eqs.
(50) and (51), the general cooperative kinetic equation, Eq. (40),
becomes identical to Eq. (10), which is the non-cooperative kinetic
equation at leading order in the large m expansion. Therefore,
when large size ligands are involved, the equation describing the
time variation in the coverage is independent of both the parame-
ter x and the parameter a. Consequently, the equilibrium coverage
can also be expressed by equations (11) or (12), of the non-
cooperative case. This generalizes the result presented in Sec-
tion II.B.2.1, showing that also in the general cooperative case
the cooperative effects are absent in the leading order in the large
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ligand size expansion. Cooperative effects only appear in the effec-
tive binding and release rate at the next-to-leading order as we
show just below.

2.3.3.2. Next-to-leading-order in the large ligand expansion (m �
1). Retaining the next-to-leading-order terms of Eqs. (50) and (51),
the kinetic equation, Eq. (40), becomes

dc
dt ¼ kbm 1� cð Þ exp �c

1 � c

� �
1 þ c 4 1 � cð Þxa � 2 þ 2x þ 1ð Þc

2m 1 � cð Þ2
h i

� kr c 1� 2 c x 1 �xa�1ð Þ
m 1�cð Þ

� 	
:

ð52Þ

Thus, the equilibrium coverage, ceq, in the limit of large m, is
given by

ln Kmð Þ ¼ ln
ceq

1� ceq

� �
þ ceq
1� ceq

þ ln 1� 2x� 1ð Þ 2� ceq
� �

ceq

2m 1� ceq
� �2

 !
: ð53Þ

[See Eq. (A40) of the Appendix and the previous definitions and
derivations.] The equilibrium coverage ceq is then independent of
the parameter a [consistently with the general result in Eq. (44)],
and the equilibrium coverage computed previously for the case
of a ¼ 1 is recovered, Eq. (28) in Section II.B.2.2. Instead, the kinetic
equation, Eq. (52), explicitly depends on the parameter a. This
implies that the binding kinetics is faster for enhanced binding,
a ¼ 1 [recovering Eq. (27)], than for inhibited release, a ¼ 0, giving

dc
dt

¼ kbm 1� cð Þexp �c
1� c

� �
1þ c 2 1� cð Þ þ c 2x� 1ð Þð Þ

2m 1� cð Þ2
" #

� krc 1� 2c x� 1ð Þ
m 1� cð Þ

� 	
: ð54Þ

The kinetic of these two cases are compared in Fig. 1 using the
full kinetic equation, Eq. (40). Fig. 1 illustrates that both reach the
same equilibrium coverage in a different time interval. Faster/
slower roles are inverted for detachment.

3. Discussion

Making an accurate account of the potential binding sites, we
have derived the kinetic equation for the cooperative binding of
ligands to long linear polymers. We derived a general kinetic equa-
tion considering that cooperativity can affect the binding and
release rates. Thus, positive cooperativity emerges by an enhance-
ment of the binding or by an inhibition of the release. Negative
cooperativity arises as an inhibition of the binding or an enhance-
ment of the release. We found that positive and negative coopera-
tivity gives different kinetics, but the equilibrium state is
independent of the origin of cooperativity and recovers theMcGhee
and von Hippel’s equation for the coverage. In addition, the results
show that the equilibrium coverage is increased significantly with
increasing positive cooperativity (see Fig. 3). The kinetic equations
presented are valid for the global coverage of long polymers. Dis-
tant regions of long polymers are nearly independent, making glo-
bal coverage an effective average over realizations.

For large ligand size, the cooperativity effects are noticeably
reduced, and the equilibrium coverages obtained in different sce-
narios are similar (see Fig. 3). In the large ligand size expansion,
the cooperative effects are absent in the leading order for both
the general cooperative case and McGhee and von Hippel’s
approach. Thus, kinetics and equilibrium coverages are indepen-
dent of cooperativity and activation state parameters. We found
that cooperative effects only appear in the effective binding and
release rate at the next-to-leading order, which means that iso-
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lated binding sites are the dominant contribution for large ligands.
Within McGhee and von Hippel’s approach, the next-to-leading
order contribution shows that positive cooperativity increases cov-
erage, while negative cooperativity decreases coverage. Within our
approach, the next-to-leading order contribution shows that the
equilibrium coverage is independent of the activation state param-
eter, but the binding kinetics is faster for enhanced binding, a ¼ 1
than for inhibited release, a ¼ 0.

The derived cooperative kinetic equation provides the adequate
theoretical framework required for the description of the ligand
binding processes observed with single-molecule techniques. In
particular, recently these techniques have allowed to measure
the real-time kinetics of SSB to ssDNA [5,26], including E. Coli
SSB, which has a cooperative biding mode. However, already for
the non-cooperative case it has been shown [38] that previous sim-
plified kinetic models for these systems [4] are only accurate for
low coverage. The key is the detailed counting of potential binding
sites. This detailed counting of binding sites was done for the non-
cooperative case in Ref. [38], following Ref. [30], allowing to obtain
an accurate kinetic equation. Here, we extended this detailed
account to obtain an accurate cooperative kinetic equation, allow-
ing more accurate descriptions of cooperative ligand binding pro-
cesses for medium and high coverage situations. For example, for
the typical biding affinities found for SSB to ssDNA, the simplified
models predict the full coverage of ssDNA [5,26], while the more
accurate models generalized here predict coverage from 80% to
90% (depending on the ligand affinity), i.e., a 10% to 20% error cor-
rection. This predicted (and observed) decrease in coverage has
also conceptual implications, as allow, in principle binding of other
small ligands. Our results from the model presented here stresses
that SSB positive cooperativity increases the ssDNA coverage at
equilibrium, and during the whole dynamics (provided the cooper-
ative mechanism is enhancement of the binding).

In the application of the present model, the ligand size m is
given by the number of occluded monomers. This comprises the
bound monomers and the additional occluded monomers due to
steric hindrance (between ligands). One ligand can bound in differ-
ent modes, i.e., occluding different number of monomers, depend-
ing on its concentration and salt concentration in the solution. For
example, human mitochondrial and E. Coli SSB have been reported
to bound, both in a low binding mode (� 40 nucleotides) or in high
binding mode (� 70 nucleotides), depending on the SSB and salt
concentrations on solution [5,17]. Understanding this mode selec-
tion and the involved mode competition is a relevant open ques-
tion, which we plan to address in the future extending the
kinetic model presented here.

Effects of conformational coiling and steric hindrance of the
polymer are beyond the scope of the present study. These effects
will reduce the effectively available number of gaps or decrease
the binding affinity, and might be relevant for some applications.
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Appendix A

Derivation of the kinetic equation and the equilibrium coverage.
First, a counting convention is adopted. To count the number of

free sites in a gap, we start at the right end of one bound ligand,
and count by proceeding to the right, one site at a time, until we
reach the left end of the next bound ligand. Using this convention,
we can express the overall probability that a given gap as the pro-
duct of the constituent conditional probabilities.

Next, the following notation is adopted. Any bound ligand can
be divided into m sections, each one corresponding to the underly-
ing polymer site; we number these sections, 1, 2. . ., m from left to
right. Thus, we have (m + 1) distinguishable types of polymer sites:
a free site, labeled f ; a site under the number 1 or left end of a
bound ligand, labeled b1; and so on from b2 up to bm the latter rep-
resenting the right end of a bound ligand. We can thus denote the
conditional probabilities used above as a sequence of two such
types. For example, fb1ð Þ is the probability, given a free site (i.e.,
a f site), that the left end of a bound ligand (i.e., a b1 site) lies to
the immediate right. (See Fig. 6)

In principle, there are mþ 1ð Þ2 different conditional probabili-
ties that can be expressed by this notation, but none of all of them
make sense. For example, there are only two types of polymer sites
which can possibly lie to the immediate right of a free site: either
another free site or the first part of a bound ligand, i.e.,
ffð Þ þ fb1ð Þ ¼ 1, implying

fb1ð Þ ¼ 1� ffð Þ: ðA1Þ
Similarly, only a free site or the left end of a second bound

ligand can lie to the immediate right of the right end of a bound
ligand and thus, bmfð Þ þ bmb1ð Þ ¼ 1, which gives

bmb1ð Þ ¼ 1� bmfð Þ ðA2Þ
Following McGhee and von Hippel analysis, the probability of a

gap having g free polymer sites long is given by

Pg ¼ bmfð Þ ffð Þg�1 fb1ð Þ ¼ bmfð Þ ffð Þg�1 1� ffð Þð Þ; ðA3Þ
where bmfð Þ is the probability, having selected the right end of a

bound ligand, that the polymer site to the immediate right is free;
ffð Þ is the probability, given a free site, that there is a second free
site to the immediate right; and fb1ð Þ is the probability, given a free
site, that the left end of a bound ligand lies to the immediate right.
Next, we must obtain the corresponding expressions for the condi-
tional probabilities in terms of the model parameters.

For non-cooperative ligands, if one considers the polymer site
immediately to the right of one selected at random, this second site
also, by definition, is selected at random and thus also has a prob-
ability of (1 � c) of being free. However, due to the nature of the
polymer, there are only two ways in which this two-step random
selection can be made. Either the first site chosen is free (a f site
chosen with probability 1 - c) and has a free site to its right (con-
ditional probability ffð Þ); or the first site chosen is the right end of a
bound ligand (a bm site chosen with probability c/m) and has a free
site to its right (conditional probability bmfð Þ). Since the overall
probability that the second site is free must be independent of
the method of random selection, we obtain:

1� cð Þ ffð Þ þ c
m

bmfð Þ ¼ 1� c: ðA4Þ

From this expression we get

bmfð Þ ¼ 1� ffð Þð Þ1� c
c
m

: ðA5Þ
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A.1. Non-cooperative case

When ligands bound non-cooperatively neither attract nor
repel one another, it can be written that

bmfð Þ ¼ ffð Þ: ðA6Þ
We now combine equations (A5) and (A6) to obtain the follow-

ing expressions for the conditional probabilities

ffð Þ ¼ bmfð Þ ¼ 1� c
1� c þ c=m

: ðA7Þ

And, using equations (A1) and (A2), we have that

fb1ð Þ ¼ bmb1ð Þ ¼ c=m
1� c þ c=m

: ðA8Þ

Then, the resulting expression for Pg is given by

Pg ¼ 1� c
1� c þ c=m

� �g c=m
1� c þ c=m

� �
: ðA9Þ

We next obtain an expression for the average number of free

binding sites per gap in terms of Pg, thus s ¼PN
g¼m g �mþ 1ð ÞPg ,

by letting N go to infinity,

s ¼
X1
g¼m

g �mþ 1ð Þ ffð Þg fb1ð Þ ¼ fb1ð Þ ffð Þm�1 ffð Þ
1� ffð Þ½ �2

¼ ffð Þ
fb1ð Þ ffð Þm�1

: ðA10Þ

Substituting Eqs. (A7) and (A8) into Eq. (A10) we obtain Eq. (4).

Generalized cooperative case

The cooperativity parameter is defined as the ratio of the prob-
abilities of the two configurations represented in Fig. 7 [44]. Ligand
locations at the left (A) and right (B) are the same for both config-
urations. The difference between the two configurations is that in
the second configuration the two represented ligands are at neigh-
boring locations and have an additional ligand–ligand interaction.
This additional ligand–ligand interaction makes Configuration 2
more probable when it is attractive, positive cooperativity.

The probability of Configuration 1 is

P1 ¼ PA bmb1ð Þ ffð Þx�1 fb1ð Þ b1b2ð Þ� � � bmfð Þ ffð Þy�1PB; ðA11Þ
while the probability of Configuration 2 is
Fig. 7. Definition of the cooperativity parameter, x; (ligand–ligand interaction param
configurations [See Eqs. (A11)–(A13)].
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P2 ¼ PA bmb1ð Þ b1b2ð Þ� � � bmfð Þ ffð Þxþy�1PB: ðA12Þ
Thus, the cooperativity parameter, defined as the ratio, becomes

x ¼ P2

P1
¼ bmb1ð Þ ffð Þ

bmfð Þ fb1ð Þ ¼
1� bmfð Þ½ � ffð Þ
bmfð Þ 1� ffð Þ½ � : ðA13Þ

where Eqs. (A1) and (A2) were considered. This implies that in
the cooperative case,

bmfð Þ ¼ ffð Þ
x� ffð Þ x� 1ð Þ : ðA14Þ

Forx > 1, the ligands attract each other, and the binding is pos-
itively cooperative; for x ¼ 1, the binding is non-cooperative; for
x < 1, the ligands repel each other, and the binding is negatively
cooperative.

Combining the last expression of Eq. (A13) with Eq. (A5), and
solving the resulting quadratic equation in ðff Þ,
m 1� cð Þ x� ffð Þ x� 1ð Þ½ � 1� ffð Þ½ � � c ffð Þ ¼ 0; ðA15Þ

we get the conditional probability

ffð Þ ¼ 2x� 1ð Þ 1� cð Þ þ c=m� R
2 x� 1ð Þ 1� cð Þ ; ðA16Þ

where R is given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c � c=mð Þ2 þ 4x 1� cð Þc=m

q
: ðA17Þ

Using Eqs. (A1), (A2) and (A5), we get the other conditional
probabilities:

bmfð Þ ¼ c þ c=m� 1þ R
2 x� 1ð Þc=m ; ðA18Þ

fb1ð Þ ¼ c � c=m� 1þ R
2 x� 1ð Þ 1� cð Þ ; ðA19Þ

bmb1ð Þ ¼ 1� c þ 2x� 1ð Þc=m� R
2 x� 1ð Þc=m : ðA20Þ

We next obtain an expression for the average number of each of
the three types of free binding sites per gap in terms of Pg, thus
s ¼PN

g¼m g �mþ 1ð ÞPg , by letting N go to infinity. For g < m, there
are no free binding sites. For g = m, there is one doubly binding site,
thus

sdc ¼ 1 � Pm ¼ bmfð Þ ffð Þm�1 fb1ð Þ ¼ bmfð Þ ffð Þm�1 1� ffð Þð Þ; ðA21Þ
eter) is done in terms of the ratio of the probabilities of the two represented
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where sdc is the average number of free doubly contiguous bind-
ing sites per gap. For g � m + 1, there are two singly contiguous
binding site, thus [using Eq. (A3) for the sum

s
�
sc ¼ 2 � P1

g¼mþ1
Pg ¼ 2 bmfð Þ ffð Þm fb1ð Þ P1

m¼0
ffð Þm ¼

¼ 2 bmfð Þ fb1ð Þ ffð Þm
1� ffð Þ ¼ 2 bmfð Þ ffð Þm;

ðA22Þ

where ssc is the average number of free singly contiguous bind-
ing sites per gap. For g � m + 2, there are g �m� 1ð Þ isolated bind-
ing sites per gap, thus [using Eq. (A3) for the sum

s
�
i ¼

P1
g¼mþ2

g �m� 1ð ÞPg ¼ bmfð Þ ffð Þm fb1ð Þ P1
m¼1

m ffð Þm ¼

¼ bmfð Þ fb1ð Þ ffð Þmþ1

1� ffð Þ½ �2 ¼
bmfð Þ ffð Þmþ1

fb1ð Þ ¼ bmfð Þ ffð Þmþ1

1� ffð Þ ;

ðA23Þ

where si is the average number of free isolated binding sites per
gap. Substituting Eqs. (A21), (A22) and (A23) into Eq. (19), using
the appropriate expressions for the conditional probabilities, we
obtain Eq. (20).

Now, we obtain an expression for the average number of each of

the three types of attached ligands in the polymer. We define li as
the average fraction of isolated attached ligands in the polymer,
whose expression is given by

li ¼ fb1ð Þ1� c
c
m

bmfð Þ ¼ bmfð Þ2: ðA24Þ

Next, we define lsc as the average fraction of attached ligands
with a single contiguous ligand in the polymer,

l
�
sc ¼ ðbmb1Þ bmfð Þþ fb1ð Þ 1�c

c
m

bmb1ð Þ ¼
¼ bmb1ð Þ bmfð Þ þ bmfð Þ bmb1ð Þ ¼ 2 bmb1ð Þ bmfð Þ:

ðA25Þ
Finally, we define ldc as the average fraction of attached ligands

with two contiguous ligands,

ldc ¼ ðbmb1Þ bmb1ð Þ ¼ bmb1ð Þ2: ðA26Þ
It is noted that

li þ lsc þ ldc ¼ bmfð Þ2 þ 2 bmb1ð Þ bmfð Þ þ bmb1ð Þ2

¼ bmb1ð Þ þ bmfð Þ½ �2 ¼ 1; ðA27Þ
as expected for consistency.
Hence, the time variation in the number of ligands bound to the

polymer, which given by Eq. (39), is written as

dn
dt

¼ kbnS� krnL; ðA28Þ

where

S ¼ si þxassc þx2asdc; ðA29Þ
and

L ¼ li þxa�1lsc þx2 a�1ð Þldc: ðA30Þ
where a is the so-called activation state parameter. The Eq.

(A29) can be expressed in terms of the conditional probabilities,
using Eqs. (A21), (A22), and (A23), as
531
S ¼ s
�
i þxa s

�
sc þx2a s

�
dc ¼ bmfð Þ ffð Þmþ1

fb1ð Þ 1þxa fb1ð Þ
ffð Þ

� 	2
¼

¼ bmfð Þ ffð Þmþ1

1� ffð Þ 1þxa 1� ffð Þ
ffð Þ

� 	2
¼

¼ bmfð Þ ffð Þm�1

1� ffð Þ ffð Þ þxa 1� ffð Þð Þ½ �2

¼ 1� c
c
m

ffð Þm�1 ffð Þ þxa 1� ffð Þð Þ½ �2; ðA31Þ

i.e., it can be expressed in terms of two of the conditional prob-
abilities ffð Þ and bmfð Þ, or in terms of the coverage c and the condi-
tional probability ðff Þ.

Moreover, Eq. (A30) can be expressed in terms of the condi-
tional probabilities, using Eqs. (A24), (A25), and (A26), as

L ¼ l
�
i þxa�1 l

�
sc þx2 a�1ð Þ l

�
dc ¼

¼ bmfð Þ þxa�1 bmb1ð Þ� �2 ¼ bmfð Þ þxa�1 1� bmfð Þð Þ� �2
;

ðA32Þ
i.e., it can be stated in terms of the conditional probability bmfð Þ.

This expression clearly shows that for x ¼ 1 or for a ¼ 1, this term
is simply equal to 1.

Finally, Eq. (39) can be written in terms of the coverage and the
conditional probabilities as

dc
dt ¼ kb c bmfð Þ ffð Þm�1

1� ffð Þ ffð Þ þxa 1� ffð Þð Þ½ �2
� �

� kr c bmfð Þ þxa�1 1� bmfð Þð Þ� �2
:

ðA33Þ

The equilibrium equation in the general case is given by K ¼ L=S
(remember that K ¼ kb=kr). Using the previous expressions for L, S,
and Eq. (A14) for ðbmf Þ, the equilibrium equation can be restated in
terms of the conditional probability ðff Þ as

K ¼ 1�xð Þ ffð Þ þx½ � ffð Þm
1� ffð Þ : ðA34Þ

The conditional probability ðff Þ for the general case is given by
Eq. (A16), but can alternatively expressed as

ffð Þ ¼ 1þ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 r

��1ð Þd
r
� 2

r
2d
r
�

¼ 1þ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4rd

m 1þ r
mð Þ2

r !
1þ r

m

� �
2d

ðA35Þ

where

d ¼ x� 1; ðA36Þ

r
� ¼ 1þ r

m
; ðA37Þ

and

r ¼ c
1� c

: ðA38Þ
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A.2.1. Expansion for large m

Under the assumption of m � 1 we obtain that the conditional
probability ffð Þ is given by the equation

ffð Þ ¼ 1 � r
m þ r2 1 þdð Þ

m2 � r3 2d2 þ 3d þ 1ð Þ
m3 þ r4 5d3 þ 10d2 þ 6d þ 1ð Þ

m4 ¼
1 � c

1 � cð Þm þ c2 1 þdð Þ
1 � cð Þ2m2 � c3 2d2 þ 3d þ 1ð Þ

1 � cð Þ3m3 þ c4 5d3þ10d2þ6dþ1ð Þ
1�cð Þ4 m4 ;

ðA39Þ
or equivalently (in terms of x)

ffð Þ ¼ 1 � r
m þ r2x

m2 � r3x 2x � 1ð Þ
m3 þ r4x 5x2 � 5x þ 1ð Þ

m4 ¼
1 � c

1 � cð Þm þ c2x
1 � cð Þ2m2 � c3x 2x � 1ð Þ

1 � cð Þ3m3 þ c4x 5x2 � 5x þ 1ð Þ
1 � cð Þ4m4 :

ðA40Þ

Also, in the limit of large m, we obtain that

S ’ me�r

r 1 þ 2rxa þ x �1
2ð Þr2 � rð Þ

m

� 	
¼

m 1�cð Þ
c exp �c

1 � c

� �
1 þ c 4 1 � cð Þxa � 2 þ 2x þ 1ð Þc

2m 1 � cð Þ2
h i

;

ðA41Þ

and

L ’ 1� 2rx 1�xa�1
� �

m
¼ 1� 2cx 1�xa�1

� �
m 1� cð Þ : ðA42Þ

The equilibrium equation, which is given by K ¼ L
S , in the limit

of large m, becomes

K ¼ rer

m
1� r r þ 2ð Þ x� 1

2

� �
m

� 	
: ðA43Þ

Using Eq. (A38), this leads to a correction to the coverage

ceq ¼ cð0Þeq þ cð1Þeq

m with

c 1ð Þ
eq ¼ c 0ð Þ

eq

� �2
2� c 0ð Þ

eq

� �
x� 1

2

� �
; ðA44Þ

where cð0Þeq is the solution for the kinetic equation in a non-
cooperative system at the leading order in large m, Eq. (12).

A.2.2. Expansion around ¼ 0

We obtain an expansion around d ¼ 0 of the conditional proba-
bility ffð Þ as

ffð Þ ¼ 1 � r
� � 1

r
� þ r

� � 1ð Þ2d
r
�3 � 2 r

� � 1ð Þ3d2
r
�5 ¼

1 � r
m 1 þ r

mð Þ þ r2d

m2 1 þ r
mð Þ3 � 2r3d2

m3 1 þ r
mð Þ5 ¼

m �1 þ cð Þ
m � 1ð Þc � m þ m �1 þ cð Þc2d

m � 1ð Þc � mð Þ3 þ 2m2 �1 þ cð Þ2c3d2
m � 1ð Þc � mð Þ5 ¼

m �1 þ cð Þ
m � 1ð Þc � m 1 þ c2d

m � 1ð Þc � mð Þ2 þ 2m �1 þ cð Þc3d2
m � 1ð Þc � mð Þ4

h i
:

ðA45Þ

In the limit of small d ¼ x� 1, we find that

S ’ r
�1�m

r
��1

1þ d r
��1ð Þ m þ 2a � 1ð Þ r

� � m þ 1ð Þ
r
�2

� 	
¼

m 1� r
mð Þ1�m

r 1þ d r m þ 2a � 1ð Þ 1 þ r
mð Þ � m þ 1ð Þ

m 1 þ r
mð Þ2

� 	
¼

c 1 � c
1�c þ c

m

� �m � 1

m 1 � cð Þ 1� 2
x�1ð Þ m � 1ð Þ a �1

2ð Þc �a mð Þc
m2 1�c þ c

mð Þ2
� 	

;

ðA46Þ

and

L ’ 1� 2 1 � að Þ 1 � 1

r
�

� �
d ¼ 1� 2 1 � að Þ r d

m þ r

¼ 1� 2 m c 1� að Þ x� 1ð Þ
1� c þ c

m

: ðA47Þ
532
The equilibrium equation, in the limit of small d ¼ x� 1,
becomes

K ¼ r
��1

� �
r
�m�1

1�
r
��1
� �

mþ r
�þ1

� �
r
��1
� �

d

r
�2

2
4

3
5: ðA48Þ

This equation shows that a higher a or d makes the brackets
smaller, which is equivalent as increasing K. Thus, we expect
higher covertures for d > 0, i.e., x > 1, and for a ¼ 1.

In addition, the equilibrium equation (in the limit of small
d ¼ x� 1) can also be written in terms of r as

K ¼ r
m

1þ r
m

� �m�1
1� r r þ 2ð Þmþ rð Þd

mþ rð Þ2
" #

ðA49Þ
Appendix B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.12.043.
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