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An atomistic approach for the structural and electronic
properties of twisted bilayer graphene-boron nitride
heterostructures
Min Long1, Pierre A. Pantaleón 2, Zhen Zhan 1✉, Francisco Guinea2,3,4, Jose Ángel Silva-Guillén 2 and Shengjun Yuan 1,5✉

Twisted bilayer graphene (TBG) has taken the spotlight in the condensed matter community since the discovery of correlated
phases. In this work, we study heterostructures of TBG and hexagonal boron nitride (hBN) using an atomistic tight-binding model
together with semi-classical molecular dynamics to consider relaxation effects. The hBN substrate has significant effects on the
band structure of TBG even in the case where TBG and hBN are not aligned. Specifically, the substrate induces a large mass gap and
strong pseudo-magnetic fields that break the layer degeneracy. Interestingly, such degeneracy can be recovered with a second hBN
layer. Finally, we develop a continuum model that describes the tight-binding band structure. Our results show that a real-space
tight-binding model in combination with semi-classical molecular dynamics is a powerful tool to study the electronic properties of
moiré heterostructures, and to explain experimental results in which the effect of the substrate plays an important role.
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INTRODUCTION
Graphene has brought a lot of excitement to the scientific
community since its isolation in 20041–3. Although the properties
of twisted bilayer graphene (TBG) have been studied in the past
decades4,5, recently it has become of great interest due to the
finding of highly correlated phases such as superconductivity and
Mott insulating phases when the twist angle is in the so-called
magic-angle regime6,7. TBG is usually supported on top of a
variety of substrates in the experiment. Interestingly, depending
on the experimental setup, it can also be clamped between two
layers of material. Among all of these, due to its atomically smooth
surface that is relatively free of dangling bonds and charge traps8,
hexagonal boron nitride (hBN) stands out due to the cleaner
structures that can be fabricated. In fact, it has been shown that
graphene mobility, when deposited on hBN8, is dramatically
improved as compared to those on SiO2 substrates9. Furthermore,
the large band gap of hBN has the advantage of having little
interaction between the states of hBN and graphene that is
opposite to the case with a metallic substrate where a large
hybridization between the graphene and metal states can occur10.
Nevertheless, although the interaction between graphene and

hBN is small due to the large band gap of hBN7, in the case of TBG
on top of hBN, it has been shown that this small interaction can
affect the electronic properties of TBG. Interestingly, the
appearance of superconducting, insulating, and ferromagnetic
phases in TBG supported on a nearly aligned hBN substrate has
made this system even more appealing to study11–14. In the latter
state, quantum anomalous Hall effect (QAH) has been measured
and the material has been thought to be a Chern insulator13,14.
Moreover, a ferroelectric phase has been found in Bernal-stacked
bilayer graphene sandwiched between two hBN layers15. There-
fore, the effect of the substrate supporting or embedding TBG
could play a key role in the electronic properties of the system.

From a theoretical point of view, TBG has been studied using
full or effective tight-binding (TB) models as well as continuum
models due to the large number of atoms found in the moiré
supercell16,17. On the other hand, due to the extra layer added
when investigating the properties of TBG supported on hBN, the
TB approach is hindered by the large number of atoms present in
the supercell and most studies use continuum models. Regarding
the effect of the structural relaxation on the electronic properties
of the system, it is treated in a perturbative way, as well as is the
case of the interaction of TBG with the substrate. Consequently,
although in some works the relaxation of the lattices and the
effect of the substrate are taken into account, the resulting model
could be in some cases oversimplified and a more detailed
calculation that takes into account a realistic relaxation and
electronic structure is fundamental in order to explain certain
experimental results, as well as to have a good starting point to
obtain a good set of parameters for the continuum model18,19.
Here, to achieve more realistic calculations we develop a full TB
model for TBG where we also include the effect of hBN at an
atomistic level. Moreover, to include the effect of the relaxation
we perform semi-classical molecular dynamics in the systems that
we study. Finally, we develop a continuum model that correctly
describes the TB bands and that takes into account the relaxation
effects as well as the effect of hBN.

RESULTS
Typically, to perform measurements, TBG is supported or
encapsulated with hBN. The supported case is a trilayer system
composed of TBG lying on top of an hBN layer (TBG/hBN), as
shown in Fig. 1a. The encapsulated case consists of a tetralayer
system, where TBG is encapsulated by two layers of hBN (hBN/
TBG/hBN), as shown in Fig. 3a. In the TBG/hBN case, we define the
stacking geometry by starting from a non-rotated AAA
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configuration, where the AA sites of TBG share the same in-plane
position (x, y)= 0 with the nitrogen atoms of hBN and, moreover,
the graphene and hBN bonds are parallel. We then rotate the hBN
layer (hBNbot) and the top graphene layer (Gtop) around the origin
while keeping fixed the middle graphene layer (Gbot). As
schematically shown in Fig. 1a, the twist angles are given by
θtbg for the angle between graphene layers and θbot for the angle
between hBN and the lower graphene layer. In the tetralayer
structure, Fig. 3a, the top hBN layer is rotated by an angle θtop with
respect to Gbot. We clarify that all twist angles (unless specified) are
measured with respect to Gbot. By encapsulating TBG with hBN,
three coexisting moiré patterns arise: the first one is induced due
to the relative orientation between the two graphene layers, and
the second and third ones appear due to the lattice constant
mismatch between hBN and its adjacent graphene layer20–24.

To perform the TB calculations a commensurate structure is
required. For the trilayer TBG/hBN structure, a commensuration is
achieved when LTBG= qLhBN, with q an integer, LTBG the TBG moiré
length and LhBN the moiré length of Gbot and hBNbot hetero-
structure (see Supplementary Note 1). For example, the structures
with θbot= 0.53°, 1.59°, 2.65° in Fig. 1 have q= 1, 3, 5, respectively.

Scalar potential and pseudo-magnetic fields
The lattice deformation due to the relaxation gives rise to periodic
scalar and gauge potentials within the moiré unit cell24–30. In
particular, the structural deformation leads to an on-site (or
deformation) potential proportional to the local compression/
dilatation and a pseudo-vector potential proportional to the shear
deformations31,32. All these effects can be accurately considered in
the TB calculation at an atomistic level (see Eq. (9) in Methods).

Fig. 1 Structural and electronic properties of TBG supported on hBN. a Schematics of the atomic configuration of TBG/hBN. b Top view of
the atomic configuration of TBG/hBN. High-symmetry stacking regions of AAA, ABC, and ACB are marked by red, black, and purple circles.
Carbon, boron, and nitrogen atoms are depicted in brown, green, and gray, respectively. c In-plane strain, u(r), in TBG/hBN with fixed θtbg=
1.05° and varying θbot. The in-plane displacements are visualized with white arrows; the color data denote the local value of the in-plane twist
of the atoms with respect to their original position (Δθ=∇ × u) with positive values corresponding to the counterclockwise rotation. The
moiré supercell is outlined in black. d Band structure and density of states of TBG/hBN with θbot= 0.53°. The color bar denotes the band for
each valley hV̂ zi with hV̂ zi � 1 if a state belongs to valley K and hV̂ zi � �1 if a state belongs to valley K 0. e, f Band structure and density of
states of TBG/hBN with θbot= 1.59° and θbot= 2.65°, respectively. g The deformation potential VD and h pseudo-magnetic field B=∇ ×
A induced by lattice relaxations in the TBG/hBN with θbot= 0.53°. The vector field A(r) is visualized with red arrows in (h). The twist angle
between bilayer graphene is fixed to θtbg= 1.05° in all cases.
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The deformation potential VD(Ri) of a carbon atom located at Ri, is
given by33:

VDðRiÞ ¼ g1
SðRiÞ � S0

S0
; (1)

where S(Ri) is an effective area around the ith carbon atom that is
modulated by local deformations, S0 ¼ 3

ffiffiffi
3

p
a20=4 is the effective

area in equilibrium, a0 is the carbon-carbon distance and g1= 4 eV
for graphene, which corresponds to the screened deformation
potential34. In free-standing TBG, the deformation potential
originates a periodic scalar on-site potential centered at the unit
cell origin (see Supplementary Note 2)32. As shown in Fig. 1g, the
presence of a substrate induces an irregular periodic deformation
potential. This irregularity reveals the complexity of the periodic
potentials induced by the hBN on TBG that are found to be
completely different from those of a single graphene layer on an
hBN substrate25. In our TB model, we have two contributions to
the on-site energy: the first one is the energy difference between
nitrogen and boron. This contribution gives rise to different
adhesion energies in the graphene/hBN unit cell and breaks the C2
inversion symmetry. This term is the main source of the mass gap
in the graphene/hBN heterostructures24,26,27,30. The second
contribution is the deformation potential Eq. (1) that slightly
modifies the band structure (see Supplementary Note 4). This
potential induces small periodic local mass gaps due to the
potential difference between neighboring sites33.
In addition to the periodic scalar potentials, the structural

relaxation gives rise to a pseudo-vector potential A with
components proportional to the shear deformation31,35. In real
space, the components of the vector potential are given by:

Ax ¼
ffiffi
3

p
2 ðt1 � t2Þ;

Ay ¼ 1
2 ð2t3 � t1 � t2Þ;

(2)

where ti= 1,2,3 are the first nearest-neighbors inter-atomic interac-
tions in the deformed lattice. If the strain is not uniform (t1 ≠ t2 ≠
t3), the vector potential generates a pseudo-magnetic field as

B ¼ c
ev

ð∇ ´AÞ; (3)

where v is the Fermi velocity of graphene and c= 1 is a numerical
factor depending on the detailed model of chemical bonding. The
effect of the pseudo-magnetic field is introduced into the TB
Hamiltonian by modifying the distance-dependent hopping
parameters. It is important to note that the pseudo-magnetic
field that acts on electrons from the valley K 0 is exactly opposite to
that acts on electrons from the valley K. Therefore, time-reversal
symmetry is preserved.

TBG supported hBN
Figure 1 shows the strain tensor, pseudo-magnetic field,
deformation potentials, and the band structure for θtbg= 1.05°
with different θbot. Some interesting features are in order: for a
twist angle θbot= 0.53°, at the corners of the unit cell the atomic
displacements in Gbot do not have a circular “vortex” shape as in
TBG (see Supplementary Note 2)31,36,37, instead, they have a
triangular-like shape. As shown in Fig. 1c, the displacements have
a counterclockwise behavior at the corners (AAA) and clockwise
displacement in the inner regions (ABC and ACB). The magnitude
of the in-plane twist of the atoms with respect to their original
position, Δθ, has different values within the moiré because the
corresponding atomic binding energies are different. This is due to
the different stackings found in each region24,26. Figure 1g
displays the distribution of the deformation potential in real
space. As we can see, in Gbot its maximum value is about 60 meV
in the ABC region, and a minimum of −40meV is found in the
AAA region. Notice that in the ACB region the on-site energies are
small, as in the AAA centers. This behavior is reminiscent of that of

monolayer graphene on hBN26,38. In addition, these magnitudes
are quite close to those of graphene on an hBN substrate33. In Gtop,

the on-site potential is one order of magnitude smaller. Figure 1h
shows the vector potential A (red arrows) and the pseudo-
magnetic field (in color) induced in both Gbot and Gtop. The
pseudo-magnetic field in Gbot has a complex shape similar to a
‘fidget spinner’, and is completely different from that of monolayer
graphene on hBN24 or free-standing TBG32. The resulting non-
uniform pseudo-magnetic field in Gbot has a maximum value of
about 18 T (which is almost twice as in pristine TBG32). In Gtop, the
pseudo-magnetic field is smaller with a maximum of 9 T. In recent
studies, the effect that an hBN substrate has on TBG is introduced
by means of an effective periodic potential acting only on the
nearest graphene layer18,39–41 with parameters obtained from
calculations of a graphene monolayer on hBN. Our results indicate
that this approach is correct, however, a renormalized set of
substrate parameters should be considered while describing the
periodic potentials42. We will discuss this in the following sections.
By increasing θbot the effect of the hBN on the TBG band

structure is reduced. Our results indicate that, for the considered
stacking, the effect of the substrate survives even for angles near
3° (see Supplementary Note 3). Nevertheless, it should be pointed
out that small variations in the value of θbot for angles below that
threshold have a huge impact on the electronic properties of the
system. As θbot increases, shown in Fig. 1c, the period of the moiré
length between Gbot and hBNbot is reduced43. For example, for θbot=
1.59° we have q= 3 resulting in LTBG= 3LhBN. The effect on the
band structure is shown in Fig. 1d–f. Narrow bands are separated
by a gap resulting from the breaking of inversion symmetry (C2). In
the nearly aligned situation, θbot= 0.53°, the gap between the
narrow bands is ~25–30meV. As the twist angle of the substrate
increases, the second moiré length is reduced and the effects of
the periodic potentials are suppressed. Interestingly, for θbot=
2.65° the gap is nonzero (Fig. 1f). The persistence of the gap for
angles far from alignment is due to the large value of the mass
term resulting from relaxation effects and the large difference of
on-site energies between graphene and hBN sites44,45. In addition,
as shown in Fig. 1d, e, the density of states (DOS) for two different
angles is quite similar. We expect to find similar DOS for a range of
small values of θbot. The persistence of the band gap for a window
of small angles and the isolated narrow bands may explain the
presence of a QAH in interacting models46, and other non-trivial
band topology effects found in TBG with a nearly aligned hBN
substrate12–14. Our results are consistent with previous studies
that argue that the QAH would only appear if one or both θbot and
θtop are near alignment18.
On the other hand, in the trilayer system shown in Fig. 1a, we

can tune both the graphene twist angle θtbg and the substrate
θbot. By modifying the graphene twist angle θtbg while keeping
fixed θbot, the band structure is also modified. Figure 2 shows the
band structure for θbot ≈ 0.53° and different twist angles, θtbg=
1.05°, 1.12°, 1.21°, and 2.28°. Here, it is important to note that, in
our model, the ‘magic’ angle is around θtbg ~ 1.21°. As it can be
seen, at this particular angle, the substrate induces a finite gap of
about 30 meV. If we decrease the TBG angle, the bands become
wider, especially the valence bands. Furthermore, the gap
between the valence and conduction bands becomes slightly
larger. Contrastingly, by increasing the angle, we can see that for
θtbg= 2.28°, the AA bilayer graphene band structure is recov-
ered47,48. In this particular case, the presence of hBN has the effect
of opening a small gap at the Dirac cones.
In free-standing TBG, the layer degree of freedom is disen-

tangled from spin and valley, providing eight-fold degeneracy in
the low energy states. In the unperturbed system, the Dirac points
are at the same energy (dashed black lines in Fig. 2) and, at low
energies, Dirac cones only interact with their analogous at
opposite layers. The presence of the hBN substrate induces a
mass gap. However, the hBN has a larger effect on Gbot than on
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Gtop and the gapped Dirac cones of Gtop and Gbot are no longer at
the same energy. Since the K point corresponding to layer 1 is
mapped to a K 0 point of layer 2 in the opposite valley, a ‘splitting’
in each of the conduction and valence bands is obtained in the full
TB model due to the energy difference. Therefore, this splitting is a
breaking of the layer degeneracy because the hBN has a larger
effect on Gbot. In fact, as we will show in the following section, by
adding a second hBN layer on the top and for certain twist angles,
the degeneracy is recovered. A similar phenomenon is obtained in
TBG in a uniform electric field49,50. Next, to identify the bands
corresponding to each valley we define a valley operator of the
form51

V̂z ¼ i

3
ffiffiffi
3

p
X

<<i;j>>;s

ηijσ
ij
z c

y
i;scj;s; (4)

where i, j denotes next-nearest-neighbor sites, ηij= ± 1 for clock-
wise or counterclockwise hopping, respectively and σij

z the Pauli
matrix is associated with the sublattice degree of freedom. The
expectation value of this operator ranges from +1 to −1, which
corresponds to the K and K 0 valley, respectively. Figure 1d displays
the band structure where the band corresponding to each valley is
identified by different colors.

TBG encapsulated between hBN
We now consider the case of TBG encapsulated between two
layers of hBN. Depending on the orientation and twist angle of
each hBN layer with respect to TBG, several configurations can be
obtained. Similar to the trilayer case, our starting point is an AAAA
stacking configuration at the unit cell origin. Additional config-
urations can be obtained by modifying the stacking, see for
example Refs. 40,52. In Fig. 3a we show a structure with arbitrary
θbot, θtop, and θtbg, where the graphene layers are depicted in red
and blue and the hBN substrate in green and black. Furthermore,
we also show the different stacking configurations that can be
found at the high-symmetry points along the moiré super-
structure. Due to the three different degrees of freedom available
when building this system, there is a large number of different
heterostructures that can be generated. Here we are going to
focus on three different cases where we fix θtbg to 1.05° and
modify both θbot and θtop. It is important to note that all the twist
angles are measured with respect to Gbot. For example, in the case
where θbot= θtop, the twist angle with respect to Gtop is
θ0top ¼ �0:53�.
When θbot= θtop the lattice structure has hBNtop and hBNbot

aligned with respect to each other. As shown in Fig. 3b, a large
gap of about ~50 meV is found in the band structure. The
corresponding pseudo-magnetic field has a three-lobed structure
with a maximum magnitude of about 36 T, which is larger than in

the trilayer case. The magnitude and direction of this field is
opposite in each graphene layer and, as shown in the right panel
of Fig. 3b–d is highly sensitive to the hBN twist angle. In the
second column of Fig. 3b–d, we can see how the in-plane twist of
the atoms with respect to their original position, Δθ, has a
complex shape that also strongly depends on the hBN angle.
Interestingly, in Gtop the in-plane strain field is oriented in
the opposite direction with respect to the field in Gbot. The
deformation potential is proportional to the change in the
effective area around each atom with respect to its equilibrium
position. As shown in the third column of Fig. 3b–d, the potential
at the corners of the unit cell is negative and has a smaller
absolute value than those in the interior regions, where there is a
maximum. This behavior is reminiscent of monolayer graphene on
hBN where it is known that the moiré pattern in the rigid system
smoothly changes between AA type, AB type (carbon on boron),
and BA type (carbon on nitrogen). Each of these configurations
has different adhesion energy that is minimum at the AB stacking,
while BA and AA are roughly similar24,26,28. The different energies
create in-plane forces that tend to maximize the area of the AB
regions and minimize the other regions. This behavior is
completely captured by our results in the third column of
Fig. 3b–d where in the red regions, the local area around each
atomic site is maximized and the on-site potential is positive.
Interestingly, this color difference allows us to distinguish the
different stacking configurations between each TBG layer and its
neighboring hBN layer by simply looking for the maximum or
minimum in the corresponding deformation potential.
Interestingly, in the tetralayer structure hBN/TBG/hBN, for twist

angles where θbot= θtop, Fig. 3b, the eight-fold degeneracy is
recovered. As we will elucidate in the following section, this occurs
because the periodic potentials acting in each graphene layer are
opposite or with the same magnitude. On the contrary, if θbot≠ θtop,
as shown in Fig. 3c, the effect of the substrate is different in each
graphene layer and the layer degeneracy is broken resulting in a
band splitting. Notice that the pseudo-magnetic fields have different
maximum values on each layer. The same happens for the in-plane
strain. In principle, we can assume that the layer degeneracy is
broken in structures with different θbot and θtop; however, this is not
always the case. Fig. 3d shows the TBG band structure with different
twist angles θbot and θtop where the layer degeneracy is recovered. By
simple geometry we notice that the twist angle of hBNtop with
respect to Gtop is θtop= 0.54° which means that each hBN layer is
twisted in opposite directions with the same angle with respect to its
nearest graphene layer and, therefore, the corresponding pseudo-
magnetic and strain fields, Fig. 3d, have opposite directions and
equal magnitudes. Our results suggest that the layer degeneracy
breaking may be recovered if jθbotj � jθ0topj. Interestingly, the DOS
close to charge neutrality has a single peak. This indicates that even if
θbot and θtop are small (or both hBN layers are nearly aligned with its
corresponding graphene layer), the band structure can be modified
completely. This can have important effects on experimental
measurements. The strong dependence of the electronic properties
of TBG for small values of θbot/top may explain why in some
experiments the valley anomalous Hall conductivity in suspended or
encapsulated structures of TBG with hBN is not always present12,13,53.
In addition, our results indicate that adding a single hBN layer to TBG
breaks the layer degeneracy giving rise to a splitting in the band
structure. This effect will produce a double peak in the local DOS
similar to the effect produced by a magnetic field32.

Effective continuum model for TBG on hBN
As we have seen previously, TB is a powerful tool to study the
electronic properties of realistic TBG and related structures in
combination with semi-classical relaxation methods. Nevertheless,
another common approach is the derivation of a continuum
model5 that describes the bands obtained from the TB

Fig. 2 Layer degeneracy breaking. Band structure (red solid lines)
of TBG/hBN with θbot= 0.53° and varying θtbg. Black dashed lines are
the band structures of the corresponding free-standing TBG at each
θtbg.
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calculations. This model could help us elucidate some of the
obtained effects and explicitly explain the influence of the hBN
substrate on the TBG. In fact, such substrate effect can be
considered by including an additional effective periodic potential
in the continuum model (see Eq. (13) in Methods).
Figure 4a shows the band structure obtained by fitting the

parameters of the continuum model to our TB calculations for
free-standing TBG (see Table 1 in Methods). As expected, our

results clearly indicate that the continuum model parameters
strongly depend on the twist angle. The addition of an hBN
substrate to support a graphene monolayer breaks the inversion
symmetry (C2) of the crystal which results in gapped Dirac
cones44,45,54–64. As mentioned before, by placing TBG on hBN, two
coexisting moiré patterns arise: the first one is induced by the
relative orientation between the two graphene layers, and the
second one appears due to the lattice constant mismatch

Fig. 3 Structural and electronic properties of TBG encapsulated between two hBN layers. a Schematic structure of the hBN/TBG/hBN
system and the different high-symmetry stackings in the superlattice. Panels b–d from left to right display the band structure, in-plane twist of
the atoms with respect to their original position, scalar potential, and pseudo-magnetic field. The twist angle of TBG is fixed to 1.05°.
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between hBN and the bottom graphene layer20–24. To qualitatively
fit a continuum model to our TB results, we assume that the
coexisting moiré patterns are identical. Previous studies18,39–41,52

have considered the effect of an hBN substrate on TBG by means
of continuum models that use the parameters obtained by TB
models of graphene on hBN20–24. Only in Ref. 40 a vertical
relaxation within the continuum model is taken into account. To
our knowledge, there are no previous works where a full TB model
for TBG on hBN that takes into account lattice relaxations is used
to fit such models. It is important to note that, although the fitting
of the continuum model is qualitative, the full TB that we use is
widely accepted and is in agreement with first-principles
calculations as well as it has been used to support different
experimental results32,65,66.
The effect of the substrate can be introduced as an effective

potential acting on the adjacent graphene layer which is periodic
in the moiré unit cell24,29:

VSL rð Þ ¼ ω0σ0 þ Δσ3 þ
X
j

VSLðGjÞeiGj �r; (5)

with amplitudes VSL(Gj) given by

VSLðGjÞ ¼ VsðGjÞ þ VΔðGjÞ þ VgðGjÞ; (6)

where

VsðGjÞ ¼ Ve
s þ ið�1ÞjVo

s

h i
σ0;

VΔðGjÞ ¼ Vo
Δ þ ið�1ÞjVe

Δ

h i
σ3;

VgðGjÞ ¼ Ve
g þ ið�1ÞjVo

g

h i
Mj;

(7)

with Mj ¼ ð�iσ2Gx
j þ iσ1G

y
j Þ=jGjj. The 2 × 2 Pauli matrices act on

the sublattice index in a single graphene layer. Δ is a parameter
that represents a spatially uniform mass term45. Notice that the
potentials induced by the substrate, Eq. (5), preserve time-reversal
symmetry. This allows us to describe its effect in a single-valley
model. Surprisingly, having identified that some of the potential
profiles in the TB solutions indicate the existence of additional
harmonics (see Supplementary Note 7), we find that the
modulation of VSL at smaller wavelengths has some effects on
the narrow bands and, therefore, Eq. (6) has to be expanded up to
two harmonics. As described in Ref. 24,29, the minimal model for an
hBN substrate depends on eight parameters: uniform on-site term
ω0, constant mass gap Δ, position-dependent scalar terms Ve

s and
Vo
s that are even and odd under spatial inversion, respectively.

Two position-dependent mass terms, Vo
ΔðeÞ and two gauge terms

Vo
gðeÞ, odd and even respectively. In the case of the second

harmonic, six additional periodic potential parameters are
required. Therefore, the Hamiltonian of TBG/hBN depends on
several parameters, four for TBG (Eq. (13) and Table 1 in Methods)
and eight for the substrate, Eq. (5). The exact values and their
dependence on the twist angles are known for single-layer
graphene on hBN25 but they are still unknown for the combined
system TBG/hBN or hBN/TBG/hBN. Obtaining exact values for a
large set of parameters is a difficult task since several combina-
tions can give similar results and a complete fitting is out of the
scope of this work. Some qualitative estimations of the substrate
parameters can be given by analyzing the band structures and the
periodic potentials in Fig. 1. For the considered stacking in Fig. 1a,
an estimated set of parameters is given by (in meV)

ðw0;Δ; V
e
1;s; V

o
1;s; V

e
1;Δ; V

o
1;Δ; V

e
1;g; V

o
1;gÞ

¼ ð3:0; 31:62;�0:75; 0:68;�0:02; 3:4;�5:14; 18:6Þ (8)

for the first harmonic amplitudes and the only nonzero amplitudes
for the second harmonic are the gauge fields ðVe

2;g; V
o
2;gÞ ¼ð�5:14;�9:3Þ meV. Figure 4b shows the band structure with the

full TB model (black line) and the fitting with a continuum model
(red line) using our estimated set of parameters which agree
qualitatively with the TB calculations (see Supplementary Note 8).
In particular, in order to achieve this kind of agreement, we found
that: (i) the mass gap is large and (ii) the gauge terms require up to
two harmonics. The first feature is in agreement with Ref. 40, where
the band structure with a similar stacking has a large mass gap. As
shown in Fig. 1, as θbot increases, the corresponding moiré length
is reduced. This strongly suppresses the effect of the periodic

Fig. 4 Continuum model. Band structure of twisted bilayer graphene with θ= 1.05° calculated with TB (black lines) and continuum (red lines)
model. a Free-standing TBG and b TBG/hBN.

Table 1. Values for parameters of the continuum model of free-
standing TBG obtained by the fitting model to the TB calculations.

Twist angle ℏvf/a u (meV) u0 (meV) V0 (meV)

1.05° −2.25 63.3 120 −1.6

1.12° −2.31 68.6 120 −1.8

1.20° −2.34 71.7 119.3 −2.2

1.30° −2.20 67.0 110.7 −2.5

1.35° −2.09 61.2 104.4 −2.7

These values are in agreement with the typically accepted values76.

M. Long et al.

6

npj Computational Materials (2022)    73 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



potentials induced by the hBN and only the constant mass terms
survives for large angles. As a final note, the strong gauge field in
(ii) results from the effects of the relaxation of the trilayer system
(TBG/hBN).
By fitting the continuum model to the TB band structures we

have found that the dominant terms are the gauge fields which
give rise to a pseudo-magnetic field and the mass term which is
responsible for the large gap. By considering only the effects of
the mass term (a similar analysis can be performed with the gauge
potential) in Fig. 5 we show the band structure of TBG in both
valleys (distinguished by color). We define Δb and Δt as the mass
terms acting in Gbot and Gtop respectively. Figure 5a, d clearly
shows the band splitting due to the different mass acting on each
graphene layer. On the contrary, Fig. 5b, c are still degenerated
due to the fact that the mass terms for the bottom and top layers
are the same. This explains why in some of our TB results the
presence of two hBN layers does not split the narrow bands. Our
results indicate that in an experimental setup, if a hBN layer is
nearly aligned with its closest graphene layer, the layer
degeneracy is broken, which may result in a double peak in the
local DOS, similar to the effect produced by a magnetic field32. We
would like to recall that, in the encapsulated case, depending on
the orientation of the hBN layers the degeneracy can be
recovered.

DISCUSSION
In this work, we have studied the electronic properties of TBG
supported on or encapsulated in hBN via a combination of an
atomistic real-space TB model and semi-classical molecular dynamics.
This procedure allows us to have a good description of realistic
structures that are measured in experiments. Using this approach, we
have found that hBN affects the electronic properties of TBG even

when the angle between TBG and hBN is far from alignment. When
studying TBG supported on an hBN substrate, the band structure
shows a gap that separates the flatbands which we ascribe to a mass
gap induced by the hBN. Moreover, hBN induces pseudo-magnetic
fields which, in combination with the mass terms break the layer
degeneracy and splittings within the bands appear. Interestingly,
when adding an extra hBN layer, that is, when the TBG is clamped
between two hBN layers the gap between the flatbands still appears,
although the degeneracy of the bands can be recovered for certain
twist angles. Finally, we have also developed a continuum model
that correctly describes the calculated TB electronic properties. In
order to qualitatively repeat the TB results, the substrate-induced
periodic potential has to be expanded up to two harmonics. These
kinds of models are helpful to understand the underlying physics
behind the main features of the TBG/hBN heterostructures. We
would like to stress that, in order to describe realistic structures as the
ones found in experimental devices, our approach of mixing semi-
classical molecular dynamics with an atomistic TB model is nowadays
a state-of-the-art calculation since first-principles calculations are far
from feasible due to the large number of atoms found in these
systems. Therefore, the explanation of phenomena appearing in TBG
either supported on an hBN or embedded between two of those
layers such as superconductivity, correlated insulators or the recently
found ferroelectric phase might only be possible using an atomistic
TB calculation or continuum models that describe the electronic
properties of such systems accurately.

METHODS
Atomic relaxation
After constructing a commensurate supercell, to investigate the effect of
the hBN substrate on the electronic properties of the system, we fully (both
in-plane and out-of-plane) relax the TBG while keeping the hBN layer fixed

Fig. 5 The effective mass term. Band structure of pristine TBG with different mass terms. a Δb= 30meV and Δt= 0, b Δb=Δt= 30meV,
c Δb=−Δt= 30meV and d Δb= 30meV and Δt=−40meV. In each panel, blue and red lines are the bands corresponding to each valley.
The periodic potentials are set to zero.
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in a flat configuration to mimic a bulk or a few layers substrate. To do so,
we use semi-classical molecular dynamics as implemented in LAMMPS67.
For intralayer interactions in the graphene layers, we use the reactive
empirical bond order potential68. For interlayer interactions between
graphene layers, we use the registry-dependent Kolmogorov–Crespi
(RDKC) potential developed for graphitic systems69. We use the same
RDKC potential for the interlayer interaction between graphene and hBN
layers. The interactions strength of C− B and C− N are 60% and 200%
with respect to the original C− C interaction, respectively33. We assume
that the relaxed structures keep the periodicity of the rigid cases.

Tight-binding model
To calculate the electronic properties we use a full TB model given by23:

H ¼ �P
i;j
tðRi � RjÞ Rij i Rj

� ��þP
i
εðRiÞ Rij i Rih j

þP
i
VDðRiÞ Rij i Rih j; (9)

where Ri and Rij i represent the lattice position and atomic state at site i,
respectively, t(Ri− Rj) is the transfer integral between sites i and j. The last
two terms in the above equation take into account the on-site
contributions, where ε(Ri) encodes the carbon, boron, and nitrogen on-
site energies and VD(Ri) the deformation potential resulting from the
structural relaxation33. In the Hamiltonian, we assume that εB= 3.34 eV and
εN=−1.40 eV, for boron and nitrogen atoms, respectively, and εC= 0 for
carbon atoms23. For the transfer integral, we simply adopt the common
Slater–Koster-type function for any combination of atomic species23:

�tðRÞ ¼ Vppπ 1� R � ez
R

� �2
" #

þ Vppσ
R � ez
R

� �2

; (10)

with:

Vppπ ¼ V0
ppπexp � R� a0

r0

� �
; (11)

Vppσ ¼ V0
ppσexp � R� d0

r0

� �
; (12)

where ez is the unit vector perpendicular to the graphene plane, R= ∣R∣,
a0 � 0:142 nm is the nearest-neighbor distance of graphene, and d0 is the
interlayer distance. V0

ppπ is the transfer integral between nearest-neighbor
atoms of graphene and V0

ppσ is that of vertically located atoms on the
neighboring layers. We take V0

ppπ � �2:7 eV, V0
ppσ � 0:48 eV, which gives a

magic angle of 1.21°. If we set V0
ppπ � �2:8 eV, V0

ppσ � 0:44 eV, the magic
angle will be 1.05°. We adopt the same Slater–Koster parameters for the
interactions between graphene and hBN, and intralayer interactions of hBN23.
r0 is the decay length of the transfer integral, and is chosen as r0= 0.317a0 so
that the next nearest intralayer coupling becomes 0:1V0

ppπ . We set the cutoff
distance of this hopping function to 0.6 nm since for larger distances the
value of hopping energy is small enough that it can be safely neglected. We
directly diagonalize the Hamiltonian to get the band structure, and compute
the DOS of this system using a TB propagation method, as described in Ref. 70.

Continuum model for free-standing TBG
We consider the case of pristine TBG, where we need to fit four
parameters: the velocity term, vf, which is known that depends on the twist
angle71–74, the interlayer coupling parameters, fu; u0g, which strongly
depends on the relaxation, and an additional periodic scalar potential Vs.
The low energy Hamiltonian of TBG is given by,

H ¼ Hðq1;ζÞ þ V sðrÞ UðrÞy
UðrÞ Hðq2;ζÞ þ Vsð�rÞ

 !
; (13)

where ql,ζ= R(±θ/2)(q− Kl,ζ) with Kl,ξ the graphene Dirac cones and H(q)=
−ζ(ℏvf/a)q ⋅ (σ1, σ2) is the Hamiltonian for monolayer graphene and ζ= ±1
is a valley index. In the above equation, U(r) is the interlayer coupling
between graphene layers which is given by the Fourier expansion,

U ¼ u u0

u0 u

� �
þ u u0ω�ζ

u0ωζ u

 !
eiζG1 �rþ

þ u u0ωζ

u0ω�ζ u

 !
eiζðG1þG2Þ�r;

(14)

where ω= e2πi/3, with u and u0 the amplitudes which take into account
relaxation effects as described in Ref. 16,75,76. G1 and G2 are the reciprocal
lattice vectors. We also introduce an even and periodic scalar potential,

Vs rð Þ ¼ �V0

X6
j¼1

eiGj �r; (15)

with V0 a constant term and the sum running over the six nearest
neighbors reciprocal lattice vectors (or fist star), this is {G1,G2,G3,−G1,
−G2,−G3}, with G3=−(G1+G2). We found that, although the magnitude
of V0 is small, it has to be included in order to correctly fit the continuum
model to the TB results. This potential appears to increase with the twist
angle, however, for large angles, it becomes negligible. This potential,
which is even and periodic, slightly distorts the narrow bands in a similar
way as a Hartree potential with a negative filling would77. We believe that
this potential is related to the different atomic rearrangements at the AA,
AB, and BA sites due to the relaxation74,78. In addition, it is important to
note that, the induced periodic potentials and mass gap due to the
presence of an hBN substrate dominate over V0(r) in Eq. (15).
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