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Abstract. The discoveries of numerous exciting phenomena in twisted bilayer

graphene (TBG) are stimulating significant investigations on moiré structures that

possess a tunable moiré potential. Optical response can provide insights into the

electronic structures and transport phenomena of non-twisted and twisted moiré

structures. In this article, we review both experimental and theoretical studies

of optical properties such as optical conductivity, dielectric function, non-linear

optical response, and plasmons in moiré structures composed of graphene, hexagonal

boron nitride (hBN), and/or transition metal dichalcogenides (TMDCs). Firstly, a

comprehensive introduction to the widely employed methodology on optical properties

is presented. After, Moiré potential induced optical conductivity and plasmons in non-

twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-

hBN and graphene-TMDCs moiré heterostructures. Next, recent investigations of

twist-angle dependent optical response and plasmons are addressed in twisted moiré

structures. Additionally, we discuss how optical properties and plasmons could

contribute to the understanding of the many-body effects and superconductivity

observed in moiré structures.

Keywords: moiré structures, optical conductivity, plasmons,twisted bilayer graphene
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1. Introduction

Two-dimensional (2D) materials, such as graphene [1], hexagonal boron nitride (hBN)

[2, 3], transition metal dichalcogenides (TMDCs) [4, 5] and many others [6, 7], have

been widely investigated over the past two decades [8]. The fact that the isolated

atomic planes could be stacked layer by layer via weak van der Waals interactions,

forming moiré structures, provides an avenue to realize functionalities distinct from the

components of the moiré systems [9]. Interestingly, heterostructures of two materials

with different lattice constants form large-scale structures that display a moiré pattern,

which we will refer to as non-twisted moiré structures. For example, by depositing

graphene on top of hBN, if they are aligned, we would obtain a graphene-hBN moiré

structure with a moiré length of around 14 nm [10]. Moiré structures can also be

obtained by rotating two layers with a relative twist angle, which are commonly

known as twisted moiré structures [11, 12]. Twisted moiré structures have attracted

tremendous attentions due to the emergence of a rich phase diagram of correlated

states. For instance, in twisted bilayer graphene (TBG), when two graphene layers

are rotated by an angle of 1.05◦, known as the magic angle, flat bands appear at the

charge neutrality point [13, 14]. As a consequence, exotic phenomena are observed,

ranging from unconventional superconductivity [15–17] to correlated insulator phases

[18–22], topological Chern insulators [23, 24], ferromagnetism [25–27], anomalous Hall

effects [26, 28, 29] and non-linear Hall effects [30]. These findings have also motivated

further search of electronic flat bands in other twisted moiré structures like twisted

trilayer graphene (TTG) [31–33], twisted double bilayer graphene (TDBG) [34–37],

twisted bilayer TMDCs [38–44], twisted bilayer hBN [45–48], and so on. In fact,

correlated insulators and tunable superconductivity have also been found in twisted

multilayer graphene systems [49–58]. Emergence of flat bands can also induce orbital

ferromagnetism and correlated insulator states in non-twisted moiré structures such as

aligned trilayer ABC graphene-hBN [59–62], and hBN-graphene-hBN heterostructures

[63]. On the other hand, twisted bilayer TMDCs can also be exceptional frameworks for

investigating many-body insulators [64, 65], Hubbard physics [66, 67] and the quantum

anomalous Hall effect [68–71]. More importantly, large-scale moiré structures also

enables exciting photonic and optoelectronic properties, like moiré excitons [72] and

polaritons as, reviewed in [73].

In the search for downscaling technological devices, optical properties, such as

optical conductivity [74–76], dielectric function [77–80], etc. have been extensively

explored in 2D materials. The unique electronic structure of graphene has motivated

research focused on the fields of non-linear plasmon response [81], plasmon-polariton

[82,83], and other plasmonics [84]. From the perspective of applications, graphene stands

out to be a very promising candidate for terahertz to mid-infrared applications [85],

such as modulators, polarizers, mid-infrared photodetectors or mid-infrared vibrational

spectroscopy [86, 87]. Furthermore, to make significant advances in the confinement

of light, plasmons have been extensively studied in graphene and TMDCs and have
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been shown to have potential applications for the development of new state-of-the-art

optical devices [86,88–92]. From a fundamental point of view, the optical and plasmon

properties of 2D materials are extremely sensitive to their band structure. Thus, the

optical properties could shed light on electronic structure [93], which could serve to

further investigate exotic quantum phases. Since moiré structures can exhibit distinct

electronic properties from their building block counterparts, moiré structures such as

TBG can lead to numerous exciting optical phenomena and could be used in future

generations of optoelectronic devices [94,95]. Here, we present an overview of the recent

progress in the matter of emerging linear optical response, plasmons and their relations

to other interesting properties in both non-twisted and twisted moiré structures.

This review is organized as follows: Section 2 introduces the common experimental

and theoretical methods for investigating optical properties and plasmons. Optical

properties and plasmons are described for non-twisted moiré structures, and for twisted

moiré structures in Sections 3 and 4, respectively. The relation to other properties such

as many-body effects and superconductivity, and a brief description of the non-linear

optical response are discussed in Section 5. In Section 6 we give a final summary and

future perspectives.

2. Methodology

This section is devoted to the introduction of the experimental techniques and theoretical

framework that are needed to study the linear optical response of moiré structures.

2.1. Experimental techniques

In general, 2D materials and 2D material-based moiré structures are expected to

show strong light-matter interaction and enriched photoresponses. For 2D systems,

the response to an applied electromagnetic field can be mainly characterized by the

optical conductivity, σ(ω). Since the optical conductivity is uniquely determined by

the band structure, it is a powerful tool to understand the electronic properties of 2D

materials. Experimentally, infrared spectroscopy (IR) is a widely used technique to

measure the optical conductivity of a material [86]. Another promising technique is

the scattering-type scanning near-field optical microscope (s-SNOM) [96], which could

provide the propagation of the surface plasmons by measuring the scattering amplitude

Sopt(x). The advantage of the s-SNOM is that, from the plasmon dispersion, it is

possible to extract the optical conductivity σ(ω) and loss function S(q, ω), enabling

experimental access to both the electronic band structure and electron-hole excitations

of the systems [97, 98]. Electron energy-loss spectroscopy (EELS) has also advanced

in recent decades to provide the structural and optical characterization of materials

by correlating the acquired infrared-to-ultraviolet spectral data with morphological and

structural information derived from secondary electron images (in scanning electron

microscope (SEM)) or the high-angle annular dark-field signal (in transmission electron
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microscope (TEM)) [99]. The loss function S(q, ω) can be extracted from the EELS

spectra. Currently, the measured results are a collection of signals from large area

samples, which are unable to provide the local structure of the moiré system and could

be influenced by extrinsic effects, for example, twist angle inhomogeneities or strain

present in the sample. Thanks to the development of new techniques, such as 4D

scanning TEM spectroscopy [100] and near-field scanning [101], it is possible to locally

probe the optoelectronic properties and could be used to study the properties of moiré

structures.

2.2. Theoretical methods

Concerning the theoretical approach, through linear response theory, we can obtain

optical properties by calculating different response functions. For example, the optical

conductivity σ(ω), and the polarization function Π0(q, ω) are evaluated from the current-

current and non-interacting density-density response functions, respectively. Other

optical properties such as the dielectric function ε(q, ω), loss function S(q, ω) and the

optical absorption coefficient can be extracted from those quantities, as discussed below.

2.2.1. Linear optical response The optical conductivity can be derived using the Kubo

formula [102] and can be written as the Kubo-Greenwood equation [103]

σα1α2 (ω) =
gsi

(2π)D

∫
BZ

dDk
∑
l,l′

nF (Ekl′ ) − nF (Ekl)

Ekl − Ekl
′

〈
kl

′ |Jα1|kl
〉 〈

kl |Jα2|kl
′〉

Ekl
′ − Ekl + ℏω + iδ

, (1)

where gs is the spin degeneracy, D is the dimension of moiré structures and is typically

set to 2 for 2D materials. Jα1 and Jα2 are current operators along the α1 and α2

directions, respectively. nF is the Fermi-Dirac distribution. Eigenvalues, Ekl, and

eigenstates, |kl⟩, with band index l and momentum k, are needed to describe optical

band transitions between l and l
′

bands. The integration runs over the whole Brillouin

zone (BZ).

By combining the Kubo formula with the tight-binding propagation method

(TBPM), the optical conductivity (omitting the Drude contribution at ω = 0) could

be expressed as [104,105]

σα1α2 (ω) = lim
ε→0+

e−βℏω − 1

ℏωΩ

∫ ∞

0

e−εt (sinωt− i cosωt)

×2Im
{
⟨φ

∣∣nF (H) eiHtJα1e
−iHt[1 − nF (H)]Jα2

∣∣φ⟩} dt, (2)

where Ω is the area of the system, β = 1/(kBT ) being kB the Boltzmann constant,

H is the Hamiltonian, and |φ⟩ is the initial state of the system, which is a random

superposition of all basis states

|φ⟩ =
∑
i

ai|i⟩, (3)

where |i⟩ are all basis states in real space and ai are random complex numbers normalized

as
∑

i |ai|2 = 1.
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The calculation of equation (2) scales linearly with the number of states N of

the system in real space. In contrast, the scaling would be O(N3) if we were to

solve equation (1) using the exact diagonalization method to obtain the eigenstates

and eigenvalues of the system. Therefore, calculating the optical conductivity using

equation (2) has advantages when dealing with non-periodic moiré structures, such

as 30◦ dodecagonal graphene quasicrystal [106–110] and large-scale periodic moiré

structures [105]. Interestingly, disorder effects on optical conductivity can be also easily

be considered with this real-space method [111]. It is important to note that there are

similar real-space methods with O(N) time scaling that do not require time propagation

to calculate transport conductivity σαβ (ω = 0) [112,113].

The optical conductivity corresponds to the optical absorption spectrum that can be

extracted from raw data of IR using multilayer Kramers-Kronig analysis program [114],

and is related to the transmission of incident light perpendicular to the system, which

is given by [115]

T = |1 +
2π

c
σ(ω)|−2 ≈ 1 − 4π

c
Re {σ(ω)} . (4)

Absorbance at normal incidence could be expressed as [75]

A =
4π

c
Re {σ(ω)} , (5)

where Re {σ(ω)} is the real part of optical conductivity.

2.2.2. Polarization function The polarization function, Π0, also known as charge

susceptibility or non-interacting density-density response function, describes the charge

fluctuation or single-particle transitions. Therefore, it is imperative to further describe

collective excitations and screening in materials. For small-scale systems, such as large-

angle twisted moiré structures whose eigenstates and eigenvalues can be obtained by

diagonalization of the Hamiltonian, the polarization function can be solved by using the

Lindhard function [116–118]

Π0(q, ω) =
gs

(2π)2

∫
BZ

d2k
∑
l,l′

nF(Ek′l′) − nF(Ekl)

Ek′l′ − Ekl − ω − iδ
× |⟨k′l′|eiq·r|kl⟩|2, (6)

where k′=k+q, δ → 0+. Generally, the integral is taken over the whole BZ, same as in

equation (1). Note here that we named the polarization function without many-body

effects and local field effects as Π0(q, ω).

Combining the TBPM with the Kubo formula, the polarization function can also

be described as [105,119]

Π0(q, ω) = − 2

Ω

∫ ∞

0

dt eiωtIm⟨φ|nF (H)eiHtρ(q)e−iHt[1 − nF (H)]ρ(−q)|φ⟩, (7)

in which ρ(q) =
∑

i c
†
iciexp(iq · ri) is the density operator, ri is the position of the ith

orbital and Ω is the area of a moiré structure system, |φ⟩ has the same form as equation

(3). Equation (7) is equivalent to the Lindhard function (equation (6)), which has been

widely used in the study of single-layer graphene and twisted bilayer graphene [120]. The
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Lindhard function has the advantage that it can be used to study specific attributions of

band transitions, such as the intraband and interband contributions to the polarization

function in moiré structures, while this information cannot be extracted from equation

(7). However, when the full-band contribution to the polarization function is required

to investigate screening effects in moiré structures, equation (7) will be a reliable choice

with lower computational complexity in comparison to the calculation of the Lindhard

funtion (6) since it includes all possible electronic excitations in moiré structures. More

details related to the TBPM and equation (7) are discussed in [105].

2.2.3. Dielectric function and plasmons The dielectric function can be derived from

the polarization function, Π0(q, ω), or the optical conductivity σ(ω). In the random

phase approximation (RPA), the dielectric function relates directly to Π0(q, ω) as

ε(q, ω) = 1 − V (q)Π0(q, ω), (8)

where V (q) is the Fourier component of the Coulomb interaction. For example, the pure

two-dimensional Coulomb interaction is V (q) = 2πe2/(εBq) with εB the background

dielectric constant. Specifically, in the long wavelength limit q → 0, the RPA dielectric

function is linked to σ(ω) as [121]

ε (q, ω) = 1 +
iq2V (q)

ω
σ (ω) . (9)

Note that the accuracy of equation (9) is lower when q gets larger due to the local

approximation used in the optical conductivity, but equation (8) is valid even for large

q because the polarization function is not a local property and dependent on q, whereas

the optical conductivity σ(ω) is independent on q. The internal electronic screening

potential can be given by the dielectric function as [122]

Vscr(q, ω) =
V (q)

ε(q, ω)
. (10)

A plasmon mode with momentum q and frequency ωp can be obtained from the dielectric

function with ε(q, ω) = 0 [122]. The plasmon mode can be also measured from the

electron energy loss function

S(q, ω) = −Im
1

ε(q, ω)
, (11)

with a sharp pole when ω = ωp. The loss function is closely related to results obtained

with EELS in experiments since the peaks in the data are related to the energy of the

plasmon modes. Besides the experimental quantities of σαβ(ω) and S(q, ω) that can be

directly reproduced by the numerical calculations, these optical quantities could shed

light on calculated electronic structures, for example, the bandwidth, band gap and

Fermi velocity and so on, which is a good starting point to further understand exotic

quantum phases.

Here, it should be noted that the limitation of RPA when the charge density is

small and dimension of moiré structures is low, since vertex corrections could not

be safely ignored in the dielectric function calculation [123]. Based on many-body
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perturbation theory, the effects of vertex corrections on the dielectric function can be

evaluated by taking into account the interaction between two non-interacting Green

functions [124–126], which are employed to derive the non-interacting density-density

response function equation (6). Actually, previous studies have shown that vertex

corrections has an impact on polarization function and plasmons in both doped and

undoped graphene [125–127]. Beyond RPA, the exchange-correlation (EX) effects also

play a role in affecting the dielectric function and plasmons [128]. But, the EX effects

can be incorporated into the RPA scheme using local-field corrections, which could be

formulated by a dielectric function with a local-field factor that cannot be determined

by a self-consistent calculation [129–132].

2.2.4. Local field effects When confronted with inhomogeneous electron systems, it

is crucial to consider the local field effects (LFE) [133, 134], via an umklapp process

in the analysis of optical properties and plasmons [135–137]. The local field effects

become stronger as the momentum transfer q increases, since then the wavelength of

the excitation becomes smaller and one has to take the inhomogeneities of the electronic

system under consideration. For example, for a moiré structure with large moiré length

and/or large wavenumber q, when the investigated q becomes comparable to the length

of the first reciprocal moiré lattice vector, the LFE could significantly change the

plasmon properties. The polarization function of including the LFE is given by

ΠG,G′(q, ω) =
gs

(2π)2

∫
BZ

d2k
∑
l,l′

nF(Ek′l′) − nF(Ekl)

Ek′l′ − Ekl − ω − iδ

×⟨kl|e−i(q+G)·r|k′l′⟩⟨k′l′|ei(q+G′)·r|kl⟩, (12)

where G and G′ are arbitrary reciprocal lattice vectors. The dielectric function within

LFE is given by the following matrix under RPA.

εG,G′(q, ω) = δG,G′ − V (q + G)ΠG,G′(q, ω), (13)

with the two-dimensional coulomb potential V (q + G) = 2πe2/εB(q + G). The off-

diagonal matrix elements in equation (13) give rise to LFE. If G = G′ = 0, the dielectric

matrix equation (13) reduces to the Lindhard dielectric function in equation (8). The

optically detected macroscopic dielectric function is given by [133,134]

ϵM(q, ω) =
1

ε−1
G=0,G′=0(q, ω)

, (14)

where ε−1 is the inverse of the matrix εG,G′ . By comparing the macroscopic dielectric

function ϵM(q, ω) to equation (8), one can know how LFE affect optical properties in

a crystal [135]. The energy loss function is formulated as S(q, ω) = −Im( 1
ϵM (q,ω)

) =

−Im[ε]−1
G=0,G′=0(q, ω).
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Figure 1. Optical conductivity in monolayer graphene. (a) Illustration of a

typical absorption spectrum of doped graphene. Reprinted with permission from

[86]. Copyright 2014 American Chemical Society. (b) First-principles absorbance of

graphene with (red line) and without (blue line) excitonic effects included. Reprinted

with permission from [138] Copyright (2009) by the American Physical Society. (c)

Illustration of the various optical transition processes. Reprinted with permission

from [86]. Copyright 2014 American Chemical Society.

3. Optical properties and plasmons in non-twisted moiré structures

3.1. Optical conductivity in graphene-based moiré structures

The optical properties of the graphene monolayer have many intriguing features [82–84],

such as a constant optical conductivity in the infrared regime and gate-dependent optical

absorbance [86]. As shown in Figure 1, firstly, there is a Drude peak at terahertz (THz)

frequencies due to the intraband transitions. Secondly, for graphene with doping µ,

a minimal absorption in the mid-infrared frequencies occurs at finite ω < 2µ due to

Pauli blocking. Thirdly, a transition occurs around ω ≈ 2µ where direct interband

processes lead to a constant optical conductivity σ0 = πe2/2h. Finally, a sharp peak

is located at 2t (with t the intralayer nearest neighbor hopping in graphene) arising

from the interband transitions between the two van Hove singularities (VHS), which are

logarithmically divergent points in electronic density of states (DOS) and corresponding

to saddle points of band structure . This peak becomes red-shifted with a different line

shape if we consider the electron-hole interaction [138].

Graphene is usually supported on top of a hBN substrate to retain a high quality.

When graphene is placed on the hBN substrate, a moiré pattern of 14 nm is formed

in aligned samples due to the 1.8% lattice mismatch between these two 2D materials

[139–141]. Undoubtedly, the periodic moiré potential induced in the graphene-hBN

structure changes significantly the electronic structure of graphene and leads to various

novel quantum phenomena such as the emergence of the second-generation Dirac cones

(located around some moiré energy EM), the renormalization of the Fermi velocity, and

a gap opening in the intrinsic Dirac cone [141].
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(b)

(c) (d)

(e) (f)

(a)

� � �' �

Figure 2. Valley polarization of graphene-hBN structure under circularly polarized

light irradiation. (a) Crystal structure of graphene-hBN structure in real space for

alignment case. (b) The band structure of graphene-hBN in the continuum model.

(c) Optical conductivity of graphene-hBN for K valley and Fermi level EF = 0 eV

under circularly polarized light. The magenta (cyan) curve is the conductivity for LCP

(RCP). (d) Distribution of dipole vectors for an interband transition near the EF = 0.0

eV in momentum space. The magenta (cyan) arrows are the real (imaginary) parts of

the dipole vectors. The black hexagon is the moiré BZ and the magenta (cyan) dots

at the hexagon corners are the K (K’) points. (e) The optical conductivity and (f)

distribution of dipole vectors for EF = −0.13 eV. Reprinted with permission from [144]

Copyright (2022) by the American Physical Society.

In the graphene-hBN moiré structure, there is a fast sublattice oscillation due to

boron and nitrogen sites which results in a series of periodic potentials acting on the

graphene monolayer [142]. The first one is an scalar potential, which results from the

moiré variation of the onsite terms, the second is a mass term originated from a local

variation of the boron and nitrogen onsite terms, and a third one is a gauge potential

resulting from the relaxation of the graphene atomic positions due to the presence of the

hBN substrate [142, 143]. The resulting potential, coupled to the electron pseudospin,

can be probed directly through infrared spectroscopy, because optical transitions are

very sensitive to wave functions of excited states. Consequently, in the experiment in

Ref. [142], a remarkable absorption peak was detected around 2EM ∼ 380 meV, which

was only observed in the graphene-hBN heterostructure. Moreover, the absorption

peaks were found to be very sensitive to electron doping, which was revealed by a sharp

decrease in its weight while increasing the electron concentration [142]. The sharp drop

could not be explained by the single-particle Pauli blocking effect whose energy was

found to be small, but was due to a renormalization of the effective potential parameters

induced by electron-electron interactions.

On the other hand, it is well-known that optical conductivity is typically dominated
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by the intraband Drude peak and interband transitions associated with singularities in

the DOS. Theoretical works can provide a better understanding of which transitions

among Bloch bands contribute to the optical conductivity. For instance, DaSilva [145]

employed a k·p continuum Dirac model and the Kubo formula to investigate the optical

conductivity of graphene aligned with hBN (as shown in Figure 2(a)). They discovered

that the moiré pattern induced sharp THz peaks due to transitions between Bloch bands

formed by the moiré potential. The particle-hole asymmetry of the moiré Bloch bands

(see Figure 2(b)) was strongly reflected in the THz and IR conductivity, which was

always Drude-dominated when the Fermi level lied above the Dirac point, but it was

interband-dominated when the Fermi energy lies in a relatively narrow interval below

the Dirac point. In addition, Abergel [146] suggested that a study of the absorption

spectra as a function of the doping for an almost completely full first miniband was

necessary to extract meaningful information about the moiré characteristics from optical

absorption measurements as well as to distinguish between various theoretical proposals

for the physically realistic interactions between graphene and hBN. One of the main

findings on Ref. [146] was the fact that distinct moiré perturbations can result in similar

absorption spectra.

The effect of polarized light was studied in Ref. [144]. It was found that a broken

spatial symmetry in the graphene-hBN structure may induce valley polarization, which

could be investigated by measuring the optical conductivity under circularly polarized

light irradiation, as shown in Figures 2(c) and (e). The conductivity depended on

the direction of rotation of the circularly polarized light, especially in the infrared

and terahertz regions. In particular, for a photon energy less smaller than 0.1 eV,

the difference between left-handed circularly polarized light (LCP) and right-handed

circularly polarized light (RCP) became larger. In this energy region, the interband

transition from valence to conduction bands dominated. The real and imaginary parts

of the dipole vectors are orthogonal at the Γ point. Thus, the valley-selective circular

dichroism (valley polarization) was induced by the irradiation of circularly polarized

light, and was responsible for the states near the Γ point (Figure 2(d)). For hole

doping case, in the region of ω < 0.1 eV, the difference in the optical conductivities

between LCP and RCP became larger. The real and imaginary parts of the dipole

vectors are mutually orthogonal at the K and K’ points, which were responsible for the

valley-selective circular dichroism. In fact, the moiré potential of aligned graphene-hBN

structures can be tuned by a twist angle that continuously change optical intraband and

interband transitions in graphene-hBN moiré structures [147].

3.2. Plasmons in graphene-based moiré structures

The plasmons in graphene-based heterostructures [10] have attracted a lot of attentions

due to the fact that plasmons in pristine graphene have very promising perspectives

[148,149]. In this section, we will mainly review plasmonic properties in graphene-hBN

and graphene-metal moiré structures.
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Figure 3. Plasmon in graphene-hBN moiré structures. (a) Theoretical predicted

plasmon energy relation versus hole-side chemical potential in a density plot of

loss function within LFE (left-hand side) and corresponding miniband structure of

graphene-hBN (right-hand side). The vertical thin solid lines in the density plot denote

the doping levels crossing diferent band edges in the miniband structure.Reprinted with

permission from [150] Copyright (2014) by the American Physical Society. (b) Particle-

hole asymmetric plasmon emerging in a density plot of loss fucntion within LFE

for graphen-hBN moiré structure. Reprinted with permission from [151] Copyright

(2019) by the American Physical Society. (c1) Illustration of the encapsulated bilayer

graphene-hBN field effect transistor. (c2) Plasmons from miniband transition in bilayer

graphene-hBN structure. Reprinted from [152] CC BY 4.0.

As mentioned in section 3.1, stacking graphene on a hBN substrate allows to

engineer the electronic band structure of graphene by the induced moiré potential.

An important consequence is the emergence of satellite Dirac points in the moiré

minibands [153] since they could give rise to collective excitations that are different

from pristine graphene. In 2014, a theoretical study on plasmons in graphene-hBN

unveiled that new plasmon modes can be generated due to transitions between satellite

Dirac points, as shown in Figure 3(a) [150]. The K-point and M-point plasmon modes

(dotted and short-dashed lines in Figure 3(a), respectively), appeared alongside a Dirac

plasmon mode (long-dashed line) in hole-doped graphene. Based on a continuum model

and including the LFE, further calculations demonstrated a dramatic asymmetry of

the plasmon dispersion at positive and negative potentials, as seen in Figure 3(b),

and also predicted several plasmon modes arising from interband transitions between

minibands. Experimentally, the measured optical response using a s-SNOM tip in
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moiré-patterned graphene was enhanced with respect to pristine graphene [97]. A

composite plasmon in graphene-hBN moiré structures was also observed, originating

from intraband transitions near the Fermi energy and predicted interband transitions

corresponding to structure mini-bands [97]. Nevertheless, up to date, the calculated

terahertz plasmon from [150] and asymmetry plasmon from [151] have not been observed

experimentally. In addition, based on an antenna-mediated coupling of a bilayer

graphene (BLG) field-effect transistor device, shown in Figure 3(c1), miniband plasmons

in BLG-hBN were also observed (see Figure 3(c2)).

 

(a) (b) (c)

Figure 4. Plasmon in graphene-metal moiré structures. (a) High-resolution electron

energy loss specstroscopy of graphene on Ru(0001), aquired with an energy of the

primary electron beam Ep of 7 eV. The longitudinal optical (LO) phonon, intraband

plasmon, moiré plasmon and π-plasmon are observed. (b) moiré VHS in graphene-Cu

moiré structures from density functional theory calculations. Used with permission of

IOP Publishing, Ltd, from [154]; permission conveyed through Copyright Clearance

Center, Inc. (c) The loss function intensity plot showing an acoustic plasmon (AP)

predicted in graphene-metal structure doped with alkali-metal atoms. Reproduced

with permission from [155] Copyright (2019) by the American Physical Society.

The observation of miniband plasmons in graphene-hBN also motivated the

exploration of electronic excitations in graphene-metal structures. The moiré potential

was induced when Cu atoms were deposited on graphene, forming a moiré structure,

giving rise to extra VHS associated with minibands (see Figure 4(b)). This resulted

in a moiré plasmon mode with energy ∼ 1.5 eV, which was contributed by interband

transition between VHS (as shown in Figure 4(a)). The existence of this plasmon mode

was theoretically confirmed by using the TBPM method [154]. Interestingly, when the

moiré potential induced in chemically doped graphene on the Ir(111) metallic surface was

suppressed, plasmon could be still significantly modified, generating an acoustic plasmon

(AP) mode along with an intraband Dirac plasmon (DP) mode (see figure 4(c)) [155].

This AP was induced by the screening effect of metallic materials or graphene-metal

hybridization rather than by the moiré reconstruction and had also been widely studied

in previous works [156–158].



Optical properties and plasmons in moiré structures 14

4. Optical properties and plasmons in twisted moiré structures

4.1. Optical conductivity of twisted bilayer graphene

The recent discovery of correlated electronic states and superconductivity in TBG [12,

15, 51] has sparked a great interest in twisted moiré systems. In TBG the interlayer

interactions induce significant distortions in the low-energy bands. This leads to

distinctive electronic effects that differ from those observed in non-twisted graphene

systems. At low angle, the interference between the moiré periods produces a long

wavelength moiré pattern [14, 159–164]. Characteristic properties like VHS and band

gaps become evident in the infrared region [115] and theoretical works [14,159–165] have

demonstrated that the moiré patterns in TBG can give rise to narrow bands that largely

contribute to the correlated effects observed in this system [15–17,23,24,51,62,166–179].

(a) (b) (c)

(d)
(e)

Figure 5. Gate tunable optical absorption of TBG. (a) Optical conductivity σ1 of

five TBG samples with five different twist angles. σmono is the optical conductivity of

monolayer graphene. (b) Electronic band diagram of TBG. BE and vHs stand for the

band edge of the second band and the saddle-point van Hove singularity, respectively.

There exist two kinds of optical transitions as indicated by the red and blue arrows. (c)

Schematic view of the ion-gel gating circuit and the infrared transmission measurement.

EMIM and TFSI are ionic liquids. (d) Optical conductivity of TBG with various gate

voltages VG. The twist angle is θ = 6.4◦. (e) (Left side) The band structure of TBG

under gating. The top band and bottom band shift by ET and EB , respectively.

U = ET − EB is their difference. Here, the gap opening is omitted for clarity. (Right

side) Optical transitions of the gated TBG. Reprinted with permission from [180]

Copyright (2019) by the American Physical Society.
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An interesting feature of TBG is that the VHS can be moved to arbitrarily low

energies by modifying the twist angle. One interesting optical analysis of TBG was

performed by Yu et. al. [180]. In the experiment, different optical conductivities were

obtained by varying the twist angle. As shown in Figure 5(b), the low-energy optical

spectrum of TBG was characterized by a linear-band (LB) absorption (pointed out by

the red arrows). This was an indication that the interlayer interaction hybridized the

LBs of the two monolayers and, as a consequence, there were two isolated bands with

an avoided crossing with the remote bands. In Figure 5(b), the transition between the

saddle-point VHS2 →VHS1 was forbidden by the lattice symmetry [115]. However, the

transition between VHS and the band edge (BE) of the second band exhibited prominent

peaks (peak-α indicated by the blue arrows). Two interesting features, shown in Figure

5(a), were found in this experiment: firstly, a frequency-independent conductivity, 2σ0,

which came from the LB transition, and secondly, an angle-dependent peak-α resulting

from the transitions between VHSs and BE. Interestingly, the peak-α was blueshifted

as the twist angle θ increased, revealing a dependence on the twist angle. Furthermore,

by designing an ion-gel gating circuit (in Figure 5(c)) it was possible to investigate the

gating effect on the properties of these devices. It was found that in the absorption

profile, cf. Figure 5(d), (i) the absorption edge of σLB had a broadening and was shifted

to higher energy, and (ii) the peak-α was shifted to a lower energy with a reduced

intensity. In addition, a modification of the band structure with gating was found,

because in the presence of a vertical electric field, Figure 5(e), the Dirac cones of each

monolayer shifted in opposite directions. This was theoretically described in [181] and

recently in [182], allowing to modify the optical transitions [183].

Additional evidence of the existence of isolated narrow bands with an enhanced

density of states was reported in 2013 by Zou et al. [184]. By means of a terahertz

time-domain spectroscopy, the optical conductivity of TBG was obtained at different

temperatures in the frequency range 0.3–3 THz. One of the main findings in this work

was a Drude-like response with a strong peak in σ1(ω) at ∼ 2.7 THz, which was identified

as peak-α in TBG with θ = 1.16◦.

Interestingly, TBG shows an angle-dependent optical conductivity, which could

be utilized to characterize the twist angle. For example, Sunku et al. [93] combined

nano-photocurrent and infrared nanoscopy methods, which enabled access to the local

electronic phenomena at length scales as short as 20 nm, and identified domains

of varying local twist angles. In addition, Calderón [185] reported that the optical

conductivity measurements could be used to distinguish different symmetry breaking

states, and may reveal the nature of the correlated states in the flat bands that appear

in TBG. As shown in Figures 6(a)-(c), in a correlated order which breaks the C2T
symmetry, named α here, a gap was opened at the Dirac points in K, resulting in

a reorganization of the spectral weight. In TBG without correlations or external

symmetry breaking, the lattice had C3 symmetry, Figure 6(f). Moreover, in a system

with C3 symmetryσXiXj
= σYiYj

. Here, Xi is the direction, as illustrated in Figure

6(f). Therefore, the optical conductivity along the four directions (X1X1, X2X2, Y1Y1
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6. Optical conductivity, DOS and band structures of undoped TBG with

different symmetry breaking orders. (a) Optical conductivity, and (b) low energy DOS

of the TBG at the CNP in a C2T symmetry breaking state α and in the non-correlated

state. (c) Flat bands of the TBG in the C2T symmetry breaking state. (d) Optical

conductivity and (e) DOS for the nematic state η. The optical conductivity in (d) is

plotted along four different directions, illustrated in (f). (f) Sketch of the C3 related

Xi directions and of Y1, and the BZ of TBG with the corresponding symmetry points.

(g) Zoom of the flat band structure for the TBG with different values of ηC3
. Note

that the optical conductivity in (a) along the four directions are equal. Reprinted

from [185] CC BY 4.0.

and Y2Y2) were equal in the correlated order, but different in the reported nematic

state (named ηC3 , which lowers the rotational symmetry of TBG). Furthermore, in the

nematic state, when the flat band was partially filled, the DOS was modified. With

larger values of the amplitude of the order parameter ηC3 , the Dirac points moved away

from the charge neutrality point and hole and electron Fermi pockets were generated.

Additional Fermi pockets appeared, leading to new band crossings between the lower

and upper flat bands (Figure 6(g)).

On the theoretical side, we highlight the following works: in Ref. [186], the authors

used a continuum model to study the frequency-dependent conductivity at different

levels of chemical potential. Moon et al. [115] performed both tight-binding and

continuum calculations of the optical conductivity, and analytically explained the optical

selection rules in terms of the symmetry of the effective Hamiltonian. In addition,

Stauber et al. [121] calculated chemical potential dependent Drude weight of the optical

conductivity in TBG by means of a continuum model. The excitonic effects, for instance,
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electron-hole interactions [187], and the self-consistent Hartree potential [188], were also

investigated in the optical spectra of TBG. It was found that in TBG under strain [189],

the peaks associated with transitions between the flat bands in the optical conductivity

were highly sensitive to the direction of the strain. The effects of a magnetic field [190]

and magnetic impurities on the optical conductivity [191], as well as optical activity

in TBG have also been analysed [192]. Analysis in stacking configurations [193, 194],

quantum dots and large twist angles (θ ≥ 5◦) [195] reveals additional optical properties.

4.2. Optical properties of other twisted 2D materials

 

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 7. Optical properties of other twisted 2D materials. (a1) Illustration

of twisted bilayer hBN with incident circularly light. (a2) Real part of total

(black lines) and chiral (blue lines) optical conductivity. Reprinted with permission

from [196] Copyright (2020) by the American Physical Society. (b2) Twist-angle

dependent cathodoluminescence (CL) intensity in (b1) twisted hBN multilayers.

Reprinted with permission from [197] Copyright 2021 American Chemical Society.

(c2) Anisotropic photoluminescence emissions in (c1) twisted monolayer/bilayer

phosphorene heterostructure with twist angle 19◦ comparing to monolayer (1L) and

bilayer phosphorence (2L). Reprinted with permission from [198].

Owing to the chiral symmetry, twisted bilayer hBN displays circular dichroism,

which has a different absorption of left and right circularly polarized light [199]. This

property can be tuned by stacking and twisting [196]. The circular dichroism is

proportional to the ratio of chiral conductivity to the total conductivity σ0 (shown

in Figure 7(a2)). The chiral response indicated that twisted bilayer hBN had different

absorption to left and right-polarized light. Besides twisted bilayer hBN, twisted hBN

films have also attracted recent experimental research, in particular Lee et al. [197] found

that both wavelength and intensity of luminescence were tunable. These properties were

found to be enhanced with the twist angle between the hBN interface layers increased,
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as seen in Figure 7(b2). The origin of this enhancement was that the moiré sub-band

gap decreased with twist angle. This experiment indicates that the moiré potential is

relevant in the moiré structures composed of bulk-like materials .

On the other hand, moiré optical properties in twisted semiconductors have

also been investigated. For example, in the anisotropic twisted monolayer/bilayer

phosphorene heterostructure, shown in Figure 7(c1). The detected anisotropic optical

transitions were notably different from the optical features of the corresponding

monolayer and multilayer phosphorene [200, 201], even at a large angle like 19◦, as

illustrated in Figure 7(c2). The reason behind this effect is that the moiré potential

resulted in a strong hybridization between the twisted layers. Furthermore, the optical

moiré transitions were sensitive to the twist angle [198]. Additionally, the twisted

heterostructure of anisotropic materials such as black phosphorus and orthorhombic

molybdenum trioxide can be used to control light polarization state [202]. Twisting

large angles such as θ = 21.81◦ and θ = 32.22◦ can also serve as a way to reduce

interlayer interaction of bilayer MoS2, which can induce a higher value of absortance

than untwisted case [203].

4.3. Plasmons of twisted bilayer graphene

Twisted bilayer graphene offers new degrees of freedom on tuning the electromagnetic

response, for example, the twist angle [187, 207, 208]. Plasmons are collective charge

oscillations that lead to nanoscale optical fields. One of the pioneer works was that of

Stauber et al. [121] who theoretically investigated the plasmonic spectrum of TBG via

a continuum model. They found that the TBG interlayer coupling gave rise to a finite

Drude weight, even in the undoped case. This allowed for the existence of plasmons

that was weakly Landau-damped due to the quasi-localized nature of the interband

transition states. As shown in Figure 8(b), acoustic interband plasmon modes appeared

at zero chemical potential and changed to conventional
√
q modes with non-zero doping

levels in the first magic-angle (1.05◦) TBG [121]. Moreover, plasmon modes in TBG

were dependent on both twist angle and the chemical potential. Interestingly, quasi-flat

plasmon modes and renormalized Fermi velocity (approached zero) were predicted in

TBG even for twist angles (∼ 1.61◦) larger than the magic angle, as seen in Figure 8(c).

These collective excitations were explained as oscillation of localized states around the

AA regions (see Figure 8(a)) [204]. Moreover, intrinsically undamped and quasi-flat

plasmon modes were discovered in doped magic-angle graphene, as depicted in Figure

8(d) [205]. Conversely, at zero doping, including the effects of atomic relaxation, low-

damped and damped plasmons were observed to emerge in the magic-angle configuration

[120]. A further theoretical study found that in the long wavelength limit, the plasmon

energy could be independent of doping level, but can be tuned by the bias voltage in

magic-angle TBG [209]. These findings distinguish the TBG system from the 2D electron

gas (2DEG) that has a traditional
√
q plasmon dispersion with energy dependent on

charge density [210]. Moreover, other unusual plasmon features such as plasmonic Dirac
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Figure 8. Theoretical exploration of plasmons in twisted bilayer graphene. (a) Moiré

structure of twisted bilayer graphene. The moiré pattern contains AA, AB and BA

high-symmetry stackings. (b) Linear plasmon emerging in the loss function intensity

plot of magic-angle twisted bilayer graphene. Reprinted from [121]. (c) Density plot

of the loss function showing quasi-flat plasmons in twisted bilayer graphene at 1.61◦

Reprinted with permission from [204] Copyright 2016 American Chemical Society. (d)

Undamped plasmons in doped magic-angle twisted bilayer graphene. W is the width

of the narrow bands. EF is the Fermi energy. Reprinted from [205]. (e) Dispersion-less

and low-damped plasmon appearing in the loss function spectrum of undoped magic-

angle TBG at temperature T = 1K. Reprinted with permission from [120] Copyright

(2021) by the American Physical Society. (f) Chiral plasmon response in twisted bilayer

graphene. Reprinted with permission from [206] Copyright (2018) by the American

Physical Society.

cone and plasmon non-reciprocity, were discovered in biased magic-angle TBG [211–214].

In addition, a further design of a TBG device as in Figure 8(f), allowed to excite chiral

longitudinal plasmonic modes with different phases. Additional chiral responses and

plasmon edge states were exploited and were found to enhance the electromagnetic

near-fields chirality in TBG [215–217]. Furthermore, theoretical studies explored how

plasmon in TBG were influenced by electron-electron interaction [188, 218], finite size

of TBG [219], and magnetic field [220].

Experimentally, the plasmon wavelength and damping rate were investigated by

infrared s-SNOM with an excitation energy of 0.11 eV [221]. It was found that TBG

with decreased twist angles leaded to the decrease of the plasmon wavelength, shown in

Figure 9(b), reflecting a renormalization of the Fermi velocity of the Dirac fermions at

different twist angles. A reduced Fermi velocity is attributed to the enhanced interlayer

interaction at twist angles, giving rise to a relaxation of the plasmon wavelength.

However, the plasmon damping rate was found to be smaller with larger twist angles,
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as seen in Figure 9(c), likely due to stronger charge scattering rates [221]. On the other

hand, the propagation of plasmon polaritons was studied by infrared nano-imaging in

TBG [101]. A linear-like plasmon mode (that is, the dispersion of a plasmon mode is

closely linear) of 1.35◦ TBG was observed by Hesp et al. [98]. The plasmon mode had

an energy around 220 meV, due to interband collective excitations whose spectrum was

reproduced with a continuum model with reduced AA tunnel coupling.

Figure 9. Experimental investigation of plasmons in twisted bilayer graphene. (a)

Illustration of the nanoinfrared imaging experiment using s-SNOM in TBG using laser

energy of E=0.11 eV. (b) Plasmon wavelength of TBG versus twist angles. The insets

plots the normalized Fermi velocity of TBG at different interlayer coupling energy

t. (c) plasmon damping rate at different twist angles. The blue arrows in (b) and

(c) mark the value of plasmon wavelength and damping rate in single layer graphene,

respectively. Reprinted with permission from [221]. Copyright (2017) by the American

Physical Society.

In addition, chiral plasmons, the surface electromagnetic waves showing non-

reciprocal propagation, in TBG were experimentally reported in Ref. [222]. They are

achieved due to the uncompensated Berry flux of the electron gas under optical pumping.

They were found to be characterized by two peaks appearing in the extinction spectra.

These low-energy plasmon modes arose from interband transition with broken time-

reversal and inversion symmetry. In the experiment, a plasmonic mode whose group

velocity approaching to zero (termed slow plasmon modes) was identified around 0.4

eV, which stemmed from interband transition between subbands in lattice-relaxed AB

domains [222], compared to theoretically predicted quasi-flat plasmon mode generated

in the AA regions [204]. These slow plasmon modes could couple to light and form

slow surface plasmon polaritons, which also provide potential for constructing optical

metamaterials [223].

4.4. Plasmons of twisted multilayer graphene

Flat band and Dirac bands are found to coexist in twisted trilayer graphene with mirror

symmetry [51,54]. This coexistence may allow the plasmons to have different properties

from those in TBG. Theoretically, Wu et al. [224] numerically investigated plasmons in

twisted trilayer graphene with different twist angles and vertical pressures. In particular,
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(a)

(d)

(b) (c)

(e) (f)

Figure 10. (a) Loss function intensity plots in the magic-angle 1.35◦ twisted trilayer

graphene; (b) and (c) pressure engineering plasmon modes in 1.89◦ twisted trilayer

graphene. Reprinted with permission from [224] Copyright (2021) by the American

Physical Society. Twisted double bilayer graphene intraband and interband plasmons

as a function of: (d) electric bias, (e) twist angle, and (f) doping level. Reprinted with

permission from [225] Copyright (2022) by the American Physical Society.

for a twist angle of 1.35◦, the defined magic angle at which Fermi velocity is zero in this

system, a clear quasi-flat plasmon mode emerged below 0.05 eV, as seen in Figure 10(a).

This plasmon was found to be originated from collective excitations inside the flat bands.

As shown in Figure 10(c), for large twist angles and no pressure, the quasi-flat plasmon

mode had a blue shift to an energy of 0.06 eV indicating the presence of wider bands

near charge neutrality. By applying a vertical pressure, the plasmon mode reappeared,

indicating an enhancement of the interlayer coupling with pressure.

On the other hand, numerical studies found that long lived, flat intraband and

interband plasmons can exist in twisted double bilayer graphene [225]. In particular, it

was found that a flat intraband plasmon modes emerged at long momentum because of

the influence of higher interband transitions. Furthermore, as shown in Figure 10(d)-(f)

these plasmon modes were found to be tuned by a vertical electric field, twist angle and

doping, respectively. Gapped interband plasmon and intraband plasmon appeared at

small and large electric field, respectively, and they persisted over a wide range of twist

angles.
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(a1)

(a2)

(b1) (c1) (d1)

(b2) (c2) (d2)

Figure 11. Loss function intensity plots of twisted bilayer MoS2 with (first row) and

without (second row) atomic relaxation. (a) Only one band, the flat band included

in equation (6), while (b) 40 band near the flat band included and (c) full band

of tight-binding model with TBPM as equation (7). Particle-hole (p-h) continuum

region is marked with “p-h continuum” and boundaries with green solid lines. (d)

The band structure of 3.5◦ twisted bilayer MoS2 without lattice relaxation (d1) and

within (d2). Reprinted with permission from [226] Copyright (2022) by the American

Physical Society.

4.5. Plasmons of twisted bilayer transition metal dichalcogenides

In moiré TMDCs, the existence of flat bands also provides possibility to explore quasi-flat

plasmon modes. A recent numerical study [226] suggested that both atomic relaxation

and high energy bands have an impact on the low energy flat-band plasmon in twisted

bilayer MoS2, shown in Figure 11. In particular, for an unrelaxed system, shown in

Figures 11(b1) and (c1), a flat intraband and linear interband plasmon modes were

found. The distinct results between the different approximations suggested that the

interband transitions play an important role in the unrelaxed system. However, the

relaxation effects transformed the two plasmon modes to one mode with
√
q dispersion

as seen in Figure 11(b1) and (c2). Further analysis concluded that the isolation of

the flat band shown in Figure 11(d1) was the key to obtain quasi-flat plasmon modes

in twisted bilayer TMDCs, and the high-energy interband transitions had impact on

plasmons at a large momentum limit [226]. In addition to the twist angle effect on

plasmons in twisted bilayer MoS2, a recent experiment also showed that film thickness

ratio of bilayers could manipulate plasmon topology in twisted WTe2 films [227]. Single-

layer MoS2 could provide multi-component plasmons since it features spin and valley

as two extra degree of freedom [228], which could be used to engineer the plasmon

properties in twisted bilayer TMDCs in future studies.
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(a) (b)

(c)

Figure 12. Many-body effects. (a) Observed optical response peak in correlated

ABC trilayer graphene-hBN moiré structure [229]. The photocurrent peak corresponds

to the optical transition crossing the Mott gap between lower Hubbard band (LHB)

and upper Hubbard band (UHB), as illustrated by the solid arrow in the left

inset.The Reprinted with permission from AAAS. (b) Optical conductivity in TBG

with correlated effect (nematic order, red and blue lines) and without correlated effect

(black line). ηC3
is the magnitude of the nematic order. Reprinted from [185] CC

BY 4.0. (c) Plasmon spectrum of TBG within different many-body effect. Reprinted

from [230] CC BY 4.0.

5. Relation with other properties

5.1. Many-body effects

Many-body effects can provide a significant effect on optical properties and plasmons of

moiré structures. For example, optical spectroscopy was employed to probe correlations

in ABC rhombohedral trilayer graphene with hBN (ABC-hBN) [229]. In this work, an

optical absorption peak emerged at ∼ 18 meV, indicating a direct optical excitation

across an emerging Mott insulator, as shown in Figure 12(a). A similar optical spectra

was observed at different fillings. The optical response was found to be a useful tool

to characterize the onsite Coulomb repulsion energy, U, in the corresponding Hubbard

model. On the other hand, optical conductivity was also theoretically used to reveal

the nature of correlated states in TBG [185]. Comparing to the optical excitation that
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a Drude peak emerged at charge neutrality in non-correlated models, new absorption

peaks appeared in the optical spectrum for different values of correlated nematic order

parameters ηC3 , see Figure 12(b). Additional calculations in the same system showed

that the optical conductivity can be used to distinguish different symmetry broken

states. The plasmons can also be used to probe many body effects as discussed in section

4.1. Recently, Papaj et al. [230] proposed to probe correlated states with plasmons in

twisted heterobilayer TMDCs, where a folded plasmon spectrum can be a signature of

correlated states, as shown in Figure 12(c). Here, the plasmon spectra has different

characteristics depending on the type of correlated effects.

5.2. Non-linear optical response

Figure 13. Photogalvanic effect in low angle TBG (θ = 0.6◦). (Left side) Schematics

of a TBG sample encapsulated by hBN. (Right side) An incident terahertz radiation

gives rise to a photovoltage. Reprinted with the permission from [231]. Copyright 2020

American Chemical Society.

The nonlinear optical response in TBG, also referred to as optotwistronics [232]

or twistoptics [233], has attracted attention only recently. Theoretical works have

explored the impact of light on the TBG band structure. In particular, a Floquet band

engineering has been investigated by means of tight-binding models [234,235]. Due to the

extensive number of sites in the TBG moiré unit cell, the continuum model has proven

to be highly valuable for studying optically induced flat bands [236], the manipulation of

interlayer couplings [237], and the formulation of effective Floquet Hamiltonians [238].

As mentioned in the previous section, the TBG transition energies are notably

influenced by the twist angle [239, 240]. Consequently, for a constant twist angle,

the activation or deactivation of one- and two-photon resonances can be achieved by

adjusting the incident wavelength. This characteristic allows for a highly adaptable

second harmonic generation in TBG [241, 242]. Remarkably, at larger twist angles

(∼ 21.79◦) and in the presence of intense laser fields, TBG has been found to display
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high-harmonic generation, that by symmetry grounds cannot occur in monolayer or

bilayer graphene [232, 243]. The selection rules described in [232] under circularly

polarized light stem from the underlying lattice symmetry of TBG at large angles.

On the other hand, at low twist angles (∼ 1.05◦) there is an interplay between

twist, band geometry and optical response [243]. There is an emergence of dynamical

symmetries coupled with the standard symmetries of the TBG lattice (C2y and C3)
which are not present at large twist angles (∼ 21.79◦) . Additional selection rules for

the current response are obtained at the low angle regime. In particular, an induced

inversion symmetry breaking [244] in the bilayer system allows for a non-zero finite Berry

curvature which enhances the non-linearity. Interestingly, as described in Ref. [243] the

high order harmonics were found strongly dependent on the magnitude of the band

geometry through the Berry curvature. The photogalvanic effect, which is the lowest

order non-linear effect, was predicted [231, 245] and then experimentally observed in

low-angle (∼ 0.6◦) samples of TBG [231], see Figure 13. At higher orders, a third order

optical non-linearity was also reported [246], where the non-linear response was found

to be considerably modified depending on the rotation angle in TBG. Effects of the

band topology [247], high harmonic generation [248], correlated insulating states [249]

have also been investigated. In addtition to TBG, non-linear optical response can be

achieved in large-angle (∼ 50◦) twisted multilayer WS2 [250]. It is worthy to mention

that via a second harmonic generation in heterostructures of graphene-hBN a transtion

from a commensurate to a non-commensurate state was detected [251].

5.3. Superconductivity

The origin of superconductivity in moiré twisted graphene layers remains a subject

of debate [12, 257]. In addition to the proposed phonon-mediated theory [258, 259],

purely electronic mechanisms such as the Kohn-Luttinger (KL) mechanism and plasmon-

mediated superconductivity have also been examined [253, 255, 256]. This is motivated

by the significant influence of electron-electron interactions found in magic-angle

TBG [15, 18]. For instance, theoretical studies of the dielectric function within the

RPA, cf. equation (10), reveal that the screened Coulomb potential calculated near

the magic-angle TBG displays attractive regions in real space [253,254,260], see Figure

14(a), indicating that superconductivity could be induced by pure electron-electron

interactions [261, 262] through a KL mechanism [253, 263]. The RPA calculations with

frequency-independent polarization function show that the superconducting instability

can appear near VHS and precedes a spin-density-wave instability under KL mechanism,

as shown in Figure 14(b). Furthermore, the critical temperature has also been predicted

based on the KL mechanism by calculating the static screened dielectric function and the

gap equation [262]. However, it is worth noting that the predicted critical temperature

is not as high as what has been observed in experiments, as indicated by the gray dots

in Figure 14(c). This suggests that phonons may also contribute to the enhancement of

the superconducting pairing [254].
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(a) (b) (c)
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Figure 14. (a) Attractive electron-electron interaction in magic-angle twisted bilayer

graphene. Reprinted with permission from [252] Copyright (2019) by the American

Physical Society. (b) Purely electron-electron induced superconductor phase in magic-

angle twisted bilayer graphene. Reprinted with permission from [253] Copyright

(2019) by the American Physical Society. (c) Superconductivity critical temperature

explained by electron-electron screening potential with (red dots) and without phonon

effect (gray dots) Reprinted from [254] CC BY-NC-ND 4.0. (d) Plasmon paring

driven by dynamic Coulomb interaction comparing to Phonon paring and (e) critical

temperature of plasmon-mediated superconductivity in TBG at different angles.

Reprinted from [255] CC BY 4.0. (f) Phonon (Ph) and plasmon (Pl) mediated

superconductivity in magic-angle TBG without (0G) and within (1G) local field effect.

Reprinted with permission from [256] Copyright (2021) by the American Physical

Society.

On the other hand, as depicted in Figure 14(d), the intrinsic plasmon mode

in magic-angle TBG is estimated to lead to an even higher critical temperature

(Tc) than the effects of phonons under a massless Dirac model. Further numerical

calculations reveal that the dynamical Coulomb-driven Tc can reach approximately 15

K and varies with the electron density of TBG near the magic angle, as shown in

Figure 14(e). Further research delves into how the local field effect (LFE) plays a

role in cooperative effects between plasmons and phonons on superconductivity [256].

As illustrated in Figure 14(f), plasmon-mediated superconductivity appears to be

insensitive to LFE, which aligns with previous findings indicating that plasmons in

TBG are not significantly affected by LFE [204, 205]. Recently, extrinsic screening

effects on superconductivity were investigated in TBG as well, showing that the critical

temperature was unaffected by screening unless the screening layer was lower than three

nanometers from the superconductor [264]. Besides LFE, effect of vertex corrections on

plasmon-mediated superconductivity in moiré structures could deserve some attentions
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[265], while vertex corrections could be safely dropped in conventional high-density

superconductors according to Migdal’s theorem [266,267]

6. Summary and Outlook

This paper reviews recent theoretical and experimental research on optical properties

and plasmons in widespread non-twisted and twisted moiré structures. For non-twisted

moiré graphene-based structures, the moiré potential plays a key role in producing

saddle points in the miniband structure of graphene, which gives rise to new optical

interband transitions between VHS which are ultimately reflected in the experimental

optical conductivity and interband plasmons. In particular, particle-hole asymmetric

features in optical conductivity and plasmons emerged due to moiré potential breaking

the symmetry of electronic wavefunction in graphene-hBN structure. The moiré-induced

interband plasmons and intrinsic intraband plasmon can coexist in graphene-based

non-twisted moiré heterostructures. In twisted moiré structures, changing the twist

angle results in varying moiré lengths, leading to a reshaping of the band structure

and alterations in both bandwidth and band velocity. In most studies on TBG, the

optical absorption peaks and plasmon wavelengths exhibit a red shift as the twist

angle decreases. Additionally, interband plasmons, low-damped, and slow plasmon

modes have been theoretically explored in flat-band TBG and confirmed by experiments.

These findings have spurred further investigations into plasmonics in flat-band twisted

trilayer graphene, double bilayer graphene, and twisted TMD systems. Twisting is

also recognized as a means to modulate the optical response in other twisted 2D moiré

systems that also exhibit intriguing optical phenomena. In flat-band moiré structures,

electron-electron interactions can also have an impact on the optical response. Some

studies have focused on understanding the effects of these interactions through optical

dynamics and plasmonics. Additionally, the formation of superconducting electron

pairs through plasmon and electron-electron interactions under the random phase

approximation provides insights into the mechanisms underlying superconductivity in

moiré structures.

Prosperous and tremendous theoretical and experimental studies on moiré

structures are still ongoing to open new avenues for physics and potential applications.

Twist-angle induced moiré potentials are appearing in other structures, such as moiré

of moiré graphene layers [268–270], TBG-hBN heterostrucuture [271–274], TBG-

TMDC heterostructure [27], twisted three-dimensional systems [275–277], and so on.

Beyond aforementioned non-twisted moiré heterostructures, studies of MoS2-metal

moiré systems [278], and non-twisted TMDC bilayer moiré heterostructures such as

MoTe2/WSe2 are also arising [279, 280]. These moiré structures could also be ideal

platforms for exploring interesting linear and non-linear optical properties as well as

plasmonics. For example, spin-orbit coupling accompanying with the moiré potentials

could cause more optical transitions in TBG-TMDC systems; the hBN induced band

gap could change the plasmon energy in TBG-hBN moiré structures. In addition, the
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twist-angle and electron-electron interaction effect can also be important in aligned

graphene-based heterostructures in prospective studies. Disorder effects, such as twist-

angle and strain effects, have shown an impact on electronic and transport properties

in moiré structures [281–285]. More studies of disorder effects on optical properties of

moiré structures are also needed in future. Last but not least, although the optical and

plasmonic applications of moiré structures are not the primary focus of this topic review

they deserve further investigation and attention.

Finally, by creating moiré patterns and further tuning them as needed (e.g., by

adjusting the twist angle, combining different materials, and applying artificial struc-

ture potentials [286]), we can obtain control over the manipulation of light in future

state-of-the-art technologies. This control may find applications in moiré photonics and

moiré optoelectronics, including lasers, detectors, modulators, infrared/terahertz pho-

toresponses, and polarizers. Exploring and gaining a fundamental understanding of how

the moiré potential influences the optoelectronic properties of these materials is, there-

fore, crucial for the advancement of the field.
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[143] Wallbank J R, Patel A A, Mucha-Kruczyński M, Geim A K and Fal’ko V I 2013 Phys. Rev. B

87(24) 245408 URL https://link.aps.org/doi/10.1103/PhysRevB.87.245408

[144] Nakagahara K and Wakabayashi K 2022 Physical Review B 106 075403 URL https://doi.org/

10.1103/PhysRevB.106.075403

[145] DaSilva A M, Jung J, Adam S and MacDonald A H 2015 Physical Review B 92 155406 URL

https://link.aps.org/doi/10.1103/PhysRevB.92.155406
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