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Electron correlation and multielectron effects are fundamental interactions that govern many

physical and chemical processes in atomic, molecular and solid state systems. The process of

autoionization, induced by resonant excitation of electrons into discrete states present in the

spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here

we investigate the attosecond photoemission dynamics in argon in the 20–40 eV spectral

range, in the vicinity of the 3s−1np autoionizing resonances. We present measurements of the

differential photoionization cross section and extract energy and angle-dependent atomic

time delays with an attosecond interferometric method. With the support of a theoretical

model, we are able to attribute a large part of the measured time delay anisotropy to the

presence of autoionizing resonances, which not only distort the phase of the emitted pho-

toelectron wave packet but also introduce an angular dependence.
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The development of attosecond sources based on high-order
harmonic generation (HHG) in gases has opened the
possibility to investigate electron dynamics on its natural

timescale1. Recently, pump-probe experiments with the pump in
the extreme ultraviolet (XUV) range and the probe in the infrared
(IR)2,3showed the feasibility to access and measure photoemission
delays, which were introduced theoretically in the 50s4,5 and
reviewed in6. Since then, it has become a very active field of
research in attosecond science7,8. Attosecond photoemission
dynamics was studied experimentally with the attosecond streak
camera in atomic2,9 and solid state targets10, and addressed
theoretically2,11,12. This was complemented by detailed inter-
ferometric measurements using the RABBIT (reconstruction of
attosecond beatings by interference of two-photon transitions)
technique3 in atoms13–16, molecules17 and solid targets18.

In the simplest case, when the electron is promoted into a flat
(non-resonant) continuum by direct laser-assisted photoioniza-
tion, the measured delay after absorbing a single XUV photon is
related to the phase shifts of the departing electron induced by the
ionic potential and laser field, respectively. One part of this so-
called atomic time delay is the Wigner delay4,5, which can be
expressed as the energy derivative of the scattering phase and is
equivalent to the group delay of the departing electron wave
packet. Thus the Wigner delay has a direct link to the classical
trajectory with the center of the electron wave packet following
the Ehrenfhest’s theorem19. In absence of resonances, this
quantity can be accessed with attosecond techniques if other
contributions are carefully subtracted11,20.

Compared to the direct ionization into the continuum, the
situation becomes more complicated when ionization occurs in
the vicinity of autoionizing states9,21,22. Autoionizing states are
highly excited short-living states that ultimately decay into the
continuum, thus opening an alternative ionization path. The
interference between the direct and autoionizing pathways gives
rise to the well-known Fano profiles in the photoionization cross
sections23, which have been directly measured in atoms24 and
molecules25 with high precision using for instance monochro-
matic synchrotron radiation. Despite their value, these studies are
unable to access the correlated dynamics of the photoionized
resonant electron wave packet. This information can be obtained
by measuring atomic time delays with attosecond techniques17,26.
As an example, the build-up of a Fano resonance in time domain
has been observed using both RABBIT27 and attosecond transient
absorption28. Yet, to date the angular behavior of resonant atomic
time delays, from which we can gain more insight, remains
unexplored.

Recently, techniques combining multicolor fields (e.g., XUV-
IR) with electron momentum detection have been used to retrieve
angular-resolved phase and amplitude of ionizing electron wave
packets29,30. A benchmark study performed with helium31 in
non-resonant conditions showed that photoionization time delays
had almost no angular dependence, except at large angles relative
to the laser polarization. For He, the absorption of a single XUV
photon opens only one ionization channel (1s→εp), but a second
IR probe photon is required in the attosecond RABBIT technique
to measure time delays. Therefore, the observed time delay ani-
sotropy was attributed to phase differences between final quan-
tum states with different angular symmetry resulting from two-
photon (XUV+IR) ionization.

In this work, we demonstrate how the angular dependence of
the atomic time delays is affected by correlation effects associated
to the mechanism of autoionization, thus giving access to angle-
resolved multi-electron dynamics on the attosecond time scale.
We present measurements of the differential photoionization
cross section of argon in a spectral energy range where the
3s13p6np series of autoionizing resonances can be efficiently

populated32,33. The measured photoelectron angular distributions
(PADs) obtained by one-photon absorption are in excellent
agreement with static measurements from studies performed with
synchrotron radiation. In addition, we get access to the angle-
resolved atomic time delays at photon energies spanning an
autoionizing resonance. Our results show that the atomic time
delay measured near these resonances depends strongly on the
electron emission angle relative to the polarization of the ionizing
XUV field. The ratio of the ionization channels 3p→εd and 3p→εs
abruptly changes across the resonances, leading to a strong var-
iation of the ionization delay with the electron emission angle and
energy.

Results
Experimental results. Results from two experiments, performed
at ETH Zurich and Lund University are presented. Figure 1 shows
the HHG spectra used in these experiments. In both cases, the
17th harmonic is resonant with an autoionizing state, the 3s−15p
(ETH) and the 3s−14p (Lund) states34. The two experiments are
both based on the RABBIT technique, but using different detec-
tion setups presented in details in the Methods section (see also
refs. 26 and 35).

The atomic delays were measured with the XUV-IR interfero-
metric RABBIT technique36,37. When an atom with ionization
potential Ip is ionized by an XUV attosecond pulse train (APT),
photoelectrons are released in the continuum at discrete kinetic
energies equal to Ekin = EHH−Ip, where EHH = (2q+1)ħω defines
the XUV photon energy comb of the APT (ω is the IR laser
frequency). When an IR dressing field is added, we obtain two-
color two-photon transitions with a photoelectron spectrum that
exhibits additional sidebands (SBs) at energies in-between two
consecutive APT comb peaks38. These energies correspond to the
absorption of an XUV photon combined with the additional
absorption or emission of an IR photon. Any SB energy can be
reached by two different interfering ionization channels37. As
explained in more details in the discussion below, the amplitude
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Fig. 1 Extreme ultraviolet spectra of the attosecond pulse trains used in the
experiment. The XUV radiation is generated by focusing the IR beam into
an argon target. The vertical lines show the energy position of the 3s−1np
series of autoionizing states converging to the 3s threshold. In the ETH
experiment (red line), the 5p state (at 27.99 eV, highlighted in green) is
resonant with harmonic 17 (HH17), while in the Lund experiment (blue line)
it is the 4p (26.6 eV, also highlighted in green). The black dashed line
indicates the position of the 3s−14s autoionizing state
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of the sideband signal oscillates as:

ASB/cos 2ωτ � Δϕatto � Δϕatomicð Þ; ð1Þ

where Δϕatto is the phase difference between the consecutive
frequency comb peaks of the APT and therefore corresponds to
the so-called attochirp39, while Δϕatomic is the accumulated
atomic phase difference between the two quantum paths
(absorption and emission of an IR photon)36.

Our experimental setups allow us to record angle-resolved
RABBIT spectrograms. Fig. 2 shows examples of the results
obtained with the ETH setup. Similar data were measured in the
Lund experiment. Fig. 2a presents an angle-integrated spectro-
gram, displaying clear sideband oscillations. Fig. 2b shows a
delay-integrated photoelectron spectrum as a function of the
emission angle θ, defined relative to the common XUV and IR
polarization axis. We determine the photoelectron angular
distributions for several discrete photon energy values, over all
emission angles except in the region θ = 0, where the detection
efficiency of the reaction microscope drops. Fig. 2c presents the
angle- and delay-integrated spectrum.

A cosine fit of the (angular-resolved) sideband signal as a
function of the delay between XUV and IR pulses returns the
value of the total phase Δϕ =Δϕatto+Δϕatomic

3. By subtract-
ing Δϕatto, the energy- and angle-dependent atomic time delay,
defined as τatomic ≈Δϕatomic/2ω18,40, can be retrieved. The atomic
time delay can in turn often be written as a sum of two
contributions: τatomic ≈ τW+τcc11. The first term is related to one-
photon ionization and, in the case of single-channel photoioniza-
tion, is the Wigner delay ðτW � Δη‘=2ωÞ, where η‘ is the
scattering phase and ‘ the angular momentum. The second term
arises from laser-induced continuum-continuum transitions τcc ≈
Δφcc/2ω.

Delay-integrated asymmetry parameters. In spherical coordi-
nates, the photoelectron angular distribution dσ/dΩ measured
within a solid angle dΩ = sinθdθdφ and resulting from the
(multiphoton) photoionization of atoms by linearly polarized
photons is given by29:

dσ
dΩ

¼ σ

4π
1þ

X2Lmax

j¼1
βjPj cosθð Þ

h i
; ð2Þ

where σ is the total photoionization cross section, θ is the angle
between the emitted photoelectron and the polarization axis of
the XUV light, Lmax is the maximum electron’s angular
momentum to which the expansion in terms of the Legendre

polynomials Pj of order j is performed. The βj parameters are the
coefficients of the Legendre polynomials. The photoelectron
angular distributions are symmetric and we expect the odd (β1, β3
and so on) order parameters to be zero.

In a first analysis, we extract the energy-dependent values of
the anisotropy parameters β from the PADs. It is well-known that
autoionization leads to a change of the anisotropy parameter
β32,41,42

Figure 3a, b shows the experimental photoelectron angular
distributions in polar coordinates (panels a and b) for harmonic
order 17 (HH17) and sideband 16 (SB16), using the harmonic
spectrum shown in red in Fig. 1 (ETH). The PADs are
constructed by filtering the counts of the delay-integrated
spectrogram (Fig. 2b) with a 0.7 eV wide energy window centered
at the harmonic (or sideband) peak. The green lines represent the
fit of the distributions, which account for the detector geometry
(Eq. (2) is multiplied by sin(θ) to account for the geometrical
effect related to the solid angle]. In the case of single-photon
absorption (harmonics), the sum in Eq. (2) includes only one
term, j = 2, and the fit of the distributions returns the values of β2.
For two-photon absorption (sidebands), we stopped the expan-
sion of Eq. (2) at j = 4. The fit of the distributions returns
vanishing β1 and β3, which is consistent with the fact that our
PADs are left-right symmetric.

Figure 3c, d show the coefficients of the Legendre polynomials
(Eq. 1) as a function of the absorbed photon energy for both the
harmonic (c, β2 only) and sideband peaks (d, β2 and β4). Our
data, indicated in red (ETH) and blue (Lund) compare well with
synchrotron measurements (black dots)33, thus validating our
experiments. The 3s−14p state clearly influences the β2 coefficient
at the 17th harmonic and 16th sideband (SB16) energies in the
Lund experiment, while the effect of the 3s−15p state is weakly
observed on SB16 in the ETH results. The variation of the β2
coefficient for SB16, larger than that observed in HH17, (Lund
experiment) might be influenced by the presence of the 3s−14s
autoionizing state (25.2 eV, see Fig. 1), which can be populated by
two-photon transitions with the 15th or 17th harmonics. Note
that the large bandwidth of the XUV and IR radiation used in the
present work significantly blurs the effect of the resonances
compared to synchrotron radiation. The different widths of the
two resonances, 80 meV for the 4p and 28.5 meV for the 5p32

explain the stronger effect observed in the Lund experiment.

Delay-dependent asymmetry parameters. In comparison to
static data acquired at synchrotrons, our pump-probe measure-
ments show worse energy resolution, however they provide access
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Fig. 2 RABBIT measurements obtained with the ETH experimental setup. a Angle-integrated photoelectron spectrum as a function of the XUV-IR delay. b
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to complementary time-dependent information. Fig. 4a shows the
behavior of β2 as a function of XUV-IR delay for harmonics and
sidebands. Here, we present the data from the Lund experiment
(obtained with the blue spectrum in Fig. 1). Similar behavior was
observed in the ETH experiment. The first observation is that the
β2 values for the harmonics and sidebands are oscillating with the
same frequency 2ω, as expected in the RABBIT setting, but with
opposite phases. For the sidebands, the variation of β2 decreases
in amplitude as the photon energy increases, while that of the

harmonics remains constant for the harmonics, as shown in
Fig. 4b.

Angular dependence of the atomic delays. In Fig. 5 we compare
the angular dependence of the atomic time delay for two different
sidebands, SB14, which is not affected by the 3s−1np resonances
(Fig. 5a) and SB16, such that H17 is resonant with the 3s−15p
autoionizing state (Fig. 5b). As described in ref. 31, the angle-
dependent atomic delay is retrieved by filtering the detected
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photoelectrons at different emission angles with respect to the
common polarization axis of the XUV/IR pulses. For each
angular sector, a RABBIT spectrogram is constructed and the SB
signal is obtained by integrating the spectrogram in an energy
window centered at the peak of the SB position. The atomic
delays shown in Fig. 5 for each angular sector are referenced
against the values retrieved for a sector between 0 to 30 degrees.
We have chosen the reference angular range as large as 30 degrees
in order to minimize the error in the reference phase. We also
present results of a numerical calculation, where the angle-
resolved atomic phase is extracted by computing the partial
complex amplitudes of the two-photon transition matrix ele-
ments. The latter are calculated following two different approa-
ches depending on whether the contribution from a resonant
state is included or not. While in the non-resonant case, the
matrix elements are evaluated by using second-order time
dependent perturbation theory43, here without including reso-
nant configurations, in the resonant case they include both
resonant and non-resonant paths by using a generalization of the
Fano configuration interaction formalism for two-photon tran-
sitions44,45. Further details on how the atomic phase and the
matrix elements are calculated are presented in Supplementary
Note 1.

The general trend of the angle variation of the atomic time
delays is the same as in the case of helium31, with the delay
becoming more and more negative as the emission angle becomes

larger (>50°). For SB14, the experimental data is reproduced by
second-order time dependent perturbation theory43, as can be
seen in Fig. 5a. There is no need to include any autoionizing state,
because the harmonics involved (HH13 and HH15) are both
placed at energies smaller than the first state of the np series (4p)
and thus are not hitting any resonance (Fig. 1).

For SB16, however, the situation is very different. As seen in
Fig. 5b, quantitative agreement between the data and the model is
achieved only if the 3s−15p resonance is accounted for. This is
accomplished with the theoretical model that was previously
validated in helium by comparison with ab-initio calculations44,45

and extended here to obtain angular information in argon (see
Supplementary Note 1). The parameters for the 3s−15p resonance,
like the energy position, autoionization width and Fano’s q
parameter are taken from ab initio calculations based on a
multiconfigurational Hartree-Fock (MCHF) approach46. When
the resonance is neglected, the estimated time delay anisotropy is
too small, as indicated by the dashed line.

Angular-resolved energy dependence of the atomic delays.
Figure 6 presents a spectrally and angularly resolved analysis of
the time delays. We here concentrate on the Lund experiment,
where we scanned the laser wavelength between 780 and 794 nm
so that the 17th harmonic spanned the resonance. In this case, we
did not use the normalization applied in Fig. 5, but normalized
the delays, for each wavelength, with respect to a line between the
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angle-integrated delays obtained by analyzing SB14 and SB22,
similarly to the procedure used in ref. 26. Fig. 6 shows striking
differences between the spectral dependence of the delay within
SB14 and SB16. For SB14 (Fig. 6a), the delay is relatively flat and
decreases for large angles; it barely depends on energy. For SB16,
when H17 is resonant with 3s−14p, (Fig. 6b), the energy variation
of the delay shows the characteristic behavior of the phase change
across a Fano resonance46. The angle-integrated variation of the
delay (not shown here) is lower than that observed in ref. 26, due
to the larger XUV and IR bandwidths used in the present work.
One of the key conclusions of this work is that the energy var-
iation of the delay also changes with angle. Interestingly, in
contrast to the non-resonant case, across the resonance the delay
first increases and then decreases with angle. The delay curves at
different angles seem to cross at the same point at 25.2 eV. The
general behavior of the delay as a function of angle and energy is
discussed in the next section.

Discussion
Here we provide a qualitative explanation of the different effects
observed in the experiments, based upon simple arguments. The
angle-dependent delay measured in two-photon experiments is
theoretically obtained by averaging the angle-resolved RABBIT
probability over the orientation of the parent ion (in the case of
argon, m = −1,0,1). However, to understand how the angular
dependence of the RABBIT phase arises, it is enough to consider
only one orientation. We thus restrict our discussion to m = 0,
and first describe resonant one-photon ionization, and subse-
quently anisotropy and delay measurements by the RABBIT
technique.

We concentrate here on the 3s−14p autoionizing state, whose
effect on the amplitude and phase of the partial ionization
channels 3p→εs and 3p→εd is presented in Fig. 7a, b. The shown
data have been obtained from a multiconfiguration Hartree-Fock
(MCHF) calculation46. Away from the resonant state, the 3p→εd

channel dominates by a factor ~5 (in amplitude) over the 3p→εs
channel. However, the amplitude of the 3p→εd channel decreases
rapidly close to the Fano resonance, while that of the 3p→εs
channel increases. This obviously affects the geometrical prop-
erties of the emitted electron wave packet. The probability
amplitude for one-photon ionization from the ground state
3p, m = 0 can be written as:

Mð1Þ / Y20 θð ÞA 1ð Þ
2 eiη2 � Y00 θð ÞA 1ð Þ

0 eiη0 ; ð3Þ

where Að1Þ
‘ are the photoionization amplitudes for the 3p ! ε‘

channel, η‘ the scattering phases and Y‘mðθÞ (m = 0) the spherical
harmonics. Using the amplitudes Að1Þ

‘ and phases η‘ from ref. 46
(Fig. 7a, b), the variation of the phase of M(1) with energy and
angle is shown in Fig. 7c. At small and large angles, the phase
variation with energy resembles the phase variation of the 3p →εd
channel. However, at 54.7° (also called the magic angle), when Y20

goes to zero (see inset in Fig. 7), the phase variation is that of the
3p→εs channel. In Fig. 7c, the curves cross at around the XUV
photon energy of 26.6 eV, when the amplitude of the 3p→εd
channel becomes small at the resonance. In this case, and in
general when there is only one channel for ionization, the phase
variation does not depend on emission angle.

The RABBIT technique allows the determination of atomic
delays via interferometry. However, as explained below, since it is
based upon two-photon XUV-IR transitions, it also changes the
angular momentum of the final states and consequently the
photoelectron angular distributions.38,47. For any ionization
channel leading to the same final state, our experimental mea-
surement involves three two-photon pathways: 3p→λ→ℓ, with
(λ, ℓ) = (0,1),(2,1),(2,3). Let us denote the amplitude of the
respective pathways by E‘λ, the phase by φðEÞ

‘λ for the emission
path, where an XUV photon is absorbed and an IR photon is
emitted. The angular part is a spherical harmonic Y‘0. We assume
that the XUV and IR fields are delayed by τ and omit any
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additional phase due to the fields (e.g. the attochirp). The two-
photon transition amplitude (m = 0), can then be written as:

ME / e�iωτ Y30 θð Þeiφ Eð Þ
32 E32 þ Y10 θð Þ eiφ

Eð Þ
12 E12 � eiφ

Eð Þ
10 E10

h in o
:

ð4Þ
Denoting the amplitude and phase of the term within the curly
brackets E(θ) and φE θð Þ ¼ Arg E θð Þ½ � respectively, and the cor-
responding quantities for path A A(θ) and φA(θ) , where both
photons are absorbed, the RABBIT amplitude can be expressed as

MSB / e�iωτþiφE θð Þ E θð Þj j þ eiωτþiφA θð ÞjA θð Þj: ð5Þ

Thus, the sideband intensity simply reads as

MSBj j2/ A θð Þj j2þ E θð Þj j2þ2 A θð ÞE θð Þj jcos½2ωτþφAðθÞ �φEðθÞ�:
ð6Þ

As can be seen, in this general case, the phase of the oscillations
depends on the emission angle48, and the angular distributions
vary with the delay.

We now examine how Eq. (6) simplifies for particular cases. In
the non-resonant case and at high kinetic energy, the two inter-
fering paths become comparable, i.e., A θð Þ � E θð Þ,
φAðθÞ � φE θð Þ þ Δφ, where Δφ is assumed to be angle-inde-
pendent, Eq. (6) reduces to

MSBj j2/ 2 A θð Þj j2½1þ cosð2ωτ � ΔφÞ� ð7Þ

so that the angular distributions have the same form, and hence
the same value of asymmetry parameters β, for all τ. As this
approximation should improve with increasing kinetic energy,
the PADs should become increasingly independent of the delay,
in agreement with the experimental results shown in Fig. 4.
Alternatively, as suggested in ref. 49, this behavior might also
result from changes in the phases involved in the two-photon
transitions as the photon energy increases.

Under the assumption that the resonance does not appreciably
affect continuum-continuum transitions, the phase for the
channel 3p ! λ ! ‘ (e.g. emission path) is approximately equal
to ηEλ þ φE

cc
þ λπ=211, where ηEλ is the scattering phase of the

intermediate continuum state, and where φE
cc originates from the

IR-induced continuum-continuum transition. At high kinetic
energy, φE

cc can be calculated with an asymptotic approximation,
and is then independent of the intermediate or final state angular
momenta11. If in addition the 3p→s channel can be neglected, the
phase terms in Eq. (6) factorize out of the curly bracket and, using
φE
cc � �φA

cc as well as Δη2 ¼ ηE2 � ηA2 , Eq (6) becomes

MSBj j2/ A θð Þj j2þ E θð Þj j2þ2 A θð ÞE θð Þj jcos 2ωτ � Δη2 � 2φE
cc

� �
:

ð8Þ
In this case, the atomic delay is isotropic. As can be seen in
Fig. 5a, this is indeed the case for emission angles θ< 45º. The
angular dependence observed for large angles is therefore due to
the non-negligible contribution of the 3p→s channel and/or the
breakdown of the asymptotic approximation for the φcc phase.
When only one intermediate channel is accessible, as in helium at
low photon energies31, the anisotropy of the atomic delay is solely
due the breakdown of the asymptotic approximation. More
details on this point are given in the Supplementary Note 2.

We now consider the resonant case. The measured angular
dependence of the phase in our two-photon measurement is not a
direct “copy” of that for one-photon ionization because the
continuum-continuum transition, needed for the phase mea-
surement, projects the resonant state onto different angular
momentum states, and thus modifies the angular distribution. To

qualitatively describe the effect of the IR-induced transitions on
the one-photon phase, we focus on the 3s−14p resonance and
assume that, for the non-resonant XUV + IR absorption path that
involves HH15, the one-photon channel 3p→s is negligible in
comparison with the 3p→d one. This is a reasonable approx-
imation since the latter channel is dominant in this range of
photon energies (Fig. 7a). We also neglect the angular momen-
tum dependence of φcc. In Eq. (6), ηAðθÞ ¼ ηA2 þ φA

cc, which does
not depend on angle, thus providing a true reference phase. We
also assume that the radial part of E‘λ is proportional to the
corresponding one-photon amplitude. The angle-resolved deter-
mination of the phase of the RABBIT oscillations as a function of
energy allows us to study the variation of the phase of ηEðθÞ. The
results of this simplified model are shown in Fig. 7d. The atomic
delay varies with energy similarly to that of the one-photon
amplitude at angles where the 3p→εd channel dominates. This
behavior changes at the angle 40°, when the spherical harmonic
Y30 goes to zero. For this angle, the energy dependence of the
delay is not that of the 3p→εs channel, as in the one-photon
ionization case, but results from the combination of the two
channels appearing in the factor that goes with Y10 in Eq. (4). As
in the one-photon case, the curves cross at the one-photon energy
of 26.6 eV, i.e., there is no angular dependence, because the
3p→εd channel becomes negligible. Although this simple model
does not allow us to explain all aspects of the experimental
results, it does show that it is the delicate interplay between the
different open channels that is actually responsible for the com-
plex angular variation of the spectrally resolved phase observed in
the experiment (Fig. 6b).

In conclusion, we have presented measurements of the two-
color (i.e., XUV- IR) differential photoionization cross section of
argon and extracted time-dependent anisotropy parameters as
well as energy and angle-dependent atomic time delays. The
spectrum of the employed XUV radiation lies in the energy
region where several singly excited bound states decay via auto-
ionization. The presence of autoionizing states clearly manifests
in the measured time delays for both the narrow 3s−15p and the
broad 3s−14p resonances. They are also very visible in the ani-
sotropy parameters extracted from time-integrated photoelectron
angular distributions generated by two-photon absorption. These
results demonstrate not only that the phase of the photoelectron
wave packet is significantly distorted in the presence of reso-
nances, which prevents one from interpreting the Wigner delay as
photoemission time delay9,50, but also that this distortion
depends on the electron emission angle. The effect of the reso-
nance on the angular dependence of the atomic delay is due to the
existence of several open channels with different angular emission
properties and with a varying amplitude across the resonance.

Methods
Experimental setup. In both ETH and Lund experiments, a Ti:Sapphire laser
system generated IR pulses with a duration of ~30 fs and optimal center wavelength
of 780 nm. The Lund experimental setup allows the tuning of the laser center
wavelength from this value up to 794 nm. The pulses are split into two arms, with
the most intense part of the beam focused into a gas target filled with argon, to
generate an APT centered at a photon energy of about 35 eV and with a spectral
envelope of about 12 eV FWHM (full-width-half-maximum). After the attosecond
pulse generation, an aluminum filter is used to remove the IR radiation co-
propagating with the XUV beam. The second branch of the IR beam is used as a
weak probe for the RABBIT technique.

In both experiments, the intensity of the IR probe beam has been measured to
be 3 � 1011Wcm�2, low enough to ensure the weak field conditions needed for
RABBIT. Both arms of the interferometer are actively stabilized in order to
minimize sources of systematic errors and ensure stability of the delay in the
attosecond range. After recombination of the IR probe with the XUV APT, the two
beams further propagate collinearly onto a toroidal mirror that focuses them onto
the argon gas jet located inside an electron spectrometer.

In the ETH experiment, the spectrometer contains a reaction microscope
detector51. This detection scheme allows for the retrieval of the full 3D momentum
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vector in coincidence for each individual charged particle over the full 4π solid
angle. In all of the results presented, the data represent the mean value extracted by
15 independent datasets, while the error bars indicate the standard deviation.

In the Lund experiment uses a velocity-map imaging (VMI) detector52, which
measures the projection of the electron distribution onto a position-sensitive
detector. This detection technique is well adapted to the geometry of the
interaction, with a common XUV and IR polarization axis, chosen to be
perpendicular to the detector axis. The 3D-electron momentum distributions are
obtained by inversion of the 2D-projections using the pBasex algorithm53. The
Lund results include 10 datasets, at different fundamental wavelengths.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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