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Abstract
Nonadiabatic processes play a fundamental role in the understanding of photochemical processes in
excited polyatomicmolecules. A particularly important example is that of radiationless electronic
relaxation at conical intersections (CIs).We discuss new opportunities for controlling coupled
electron–nuclear dynamics at CIs, offered by the advent of nearly single-cycle, phase-stable,mid-
infrared laser pulses. To illustrate the controlmechanism, a two-dimensionalmodel of theNO2

molecule is considered. The key idea of the control scheme is tomatch the time scale of the laser field
oscillations to the characteristic time scale of thewave packet transit through theCI. The
instantaneous laserfield changes the shape and position of theCI as thewave packet passes through.
As the CImoves in the laserfield, it ‘slices’ through thewave packet, sculpting it in the coordinate and
momentum space in away that is sensitive to the carrier-envelope phase of the control pulse.We find
that the electronic coherence imparted on the sub-laser-cycle time scalemanifests duringmuch longer
nuclear dynamics that follow on themany tens of femtosecond time scale. Control efficiency as a
function ofmolecular orientation is analyzed, showing thatmodest alignment is sufficient for showing
the described effects.

1. Introduction

Not onlymonitoring, but also controllingmolecular processes has always been one of themain goals in physics,
chemistry and biology, as it opens the possibility for their guidedmanipulation. In particular, the advances in
laser technology open up a steadily widening range of opportunities for coherent quantum control ofmolecular
dynamics.

Already in the late 1980s, quantum control strategies have been suggested, including the ‘coherent phase-
control technique’ by Brumer and Shapiro [1, 2], the ‘pump–dump time delay control technique’ byTannor,
Rice andKosloff [3, 4], and the technique proposed by Bergmann and co-workers [5–7], which has become
known as ‘stimulated Raman adiabatic passage’ (STIRAP).

Since these seminal works, impressive achievements in controllingmolecular processes have been reported,
exploring all kinds of different laser field parameters, such as intensity, frequency, pulse duration, etc. In
particular, themethod termed ‘optimal control theory’ (OCT) has extended the one-parameter control schemes
by employing feedback learning algorithms to generate complex laser pulses that are shaped in both the time and
frequency domain andwhich are designed to optimize a desired outcome of a givenmolecular reaction [8–12].
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This adaptive-control scheme has nowbeen applied to a variety ofmolecules to govern specified chemical
processes [13–16].

We discuss new opportunities for controllingmultidimensional coupled electron–nuclear dynamics,
offered by the advent of nearly single-cycle, phase-stable,mid-infrared (MIR) laser pulses. The key idea of the
specific control scheme discussed here is tomatch the time scale of the laser field oscillations to the characteristic
time scale of thewave packet passage through a conical intersection (CI) [17–19]. The instantaneous laserfield
changes the shapes of the intersecting potential energy surfaces (PESs) as thewave packetmoves through theCI
region. As a consequence, following the oscillations of the field, the intersection pointmoves in the nuclear
coordinate space and ‘slices’ through the passing nuclear wave packet, thereby sculpting it in the coordinate and
momentum space. This leads to two consequences. First, the laser pulse changes thewave packet transfer
through theCI, and thus the branching ratio, in away that is sensitive to the carrier-envelope phase (CEP) of the
control pulse. Second, furtherwave packet passages through theCI, long after the end of the laser pulse, retain
thememory of the control pulse. Both the shapes of the nuclear wave packets on each PES and the relative phase
between them control thefield-free dynamics on themany tens of femtosecond time scale. Thus the electronic
coherence imparted on the sub-laser-cycle time scalemanifests duringmuch longer nuclear dynamics that
follow.

Coupled electron–nuclear dynamics at CIs, and in particular their control with a laser field, is a rich and
activefield of research. In the following, we give a brief overview of different laser control schemes that have been
developed tomanipulate non-adiabatic dynamics at CIs. Especially for the complex photodynamics in larger
molecules, which are complicated by the numerous non-adiabatic couplings between the various electronic
states, OCThas been demonstrated both experimentally and theoretically to be an effective tool to guide the
temporal evolution of amolecular system via aCI towards a desired target state (chemical product) bymeans of
the feedback-optimized, shaped laser pulses [20–26].

Similar works have been performed involving the S S2 1 internal conversion process in pyrazine, which is
a benchmark system for non-adiabatic dynamics at CIs (see e.g. [27–30] and references therein) and subject of
numerous, diverse control studies [31–34]. Using pyrazine as an example, a general approach for suppressing
radiationless transitions has been proposed [35, 36], combiningOCTwith the concept of electronically localized
eigenstates of strongly vibronically coupled systems, to populate a stable superposition state. It has been shown
that the formation of such a stationary state allows the suppression of the radiationless decay for extended time
periods on the nanosecond time scale. Pyrazine has also been employed [37, 38] to examine the possibility of
extensive control based on the concept of overlapping resonances [39–41], to eitherminimize ormaximize the
population that undergoes the radiationless transition.

Another route for controlling wave packet dynamics at CIs or avoided crossings is based on the observation
that the dynamics is particularly sensitive to changes of the topography of the PESs close to the coupling region.
It has been shown thatmolecular processes can be controlledwith short, intense IR fields via the nonresonant
dynamic Stark effect (NRDSE) [42–53], where the IR photons are not in resonancewith an electronic transition
in themolecule. Both experimentally and theoretically it has been demonstrated that this effect can be used to
control the photodissociation branching ratio at the avoided crossing present in the IBrmolecule [54–57]. The
pulse-dependentmodifications of the potential energy curves induced by theNRDSEmanipulate thewave
packet velocity at the crossing, which, in turn, affects the Landau–Zener transition probability [50–52]. To date
theNRDSE scheme has been successfully employed to control differentmolecular proccesses in various systems
[58–63]. Recently it has been shown that theNRDSE canmodify the topography of the PESs in pyrazine, using a
four-dimensional [64] and a full 24-dimensional [65]model. Here, the CI is shifted away from the Franck-
Condon region, where a newminimum is created, localized on the S2 PES. As a consequence, thewave packet is
trapped on the S2 PES, where it stays for amuch longer period than the natural S2 lifetime.

As relatively long,many-cycle pulses have been used in themajority of the laser control studies, the influence
of theCEPof the pulse on the nuclear wave packet dynamics at a CI has not been subject of particular interest
until recent work presented in [66]. In [66], the effect of a few-cycle,MIR control pulse on the population
dynamicsmediated by aCI has been examined. The control pulse acts on themolecule just before the internal
conversion process at the CI takes place. Changing theCEP of the control pulse changes the phase of thewave
packet approaching the coupling region. The interplay between this phase and that imprinted by the non-
adiabatic coupling nowdefines the path through theCI and thus thefinal branching ratio.

In comparison, in the present work, we analyze how a nearly single-cycle IR pulse affects the nuclear wave
packetwhile it propagates through theCI region. To illustrate the idea of control via a laser-driven, ‘sculpting’
intersection, we consider an example of theNO2molecule within a two-dimensional (2D) approximation. In
thismolecule, the transit through the 12A1/12B2 CI is very fast, taking only about t ~ 6CI fs. The presented
calculations correspond to a particular, favorable orientation of themolecule. However, complementary
calculations for different spatial orientations of themolecule (not depicted here) show that already amoderate
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molecular alignment distribution of a »cos 0.52 is sufficient to observe the effect of the control pulse
discussed here.

Already in 2010, Arasaki et alhave reported on the effect of a control pulse on thewave packet dynamics at the
12A1/12B2 CI inNO2 [67, 68]. They have studied themodifications of thePESs induced by a half-cycle,
long-wavelength infrared laser pulsewith awavelengthofl = 12.4 μm, corresponding to a laser period of
»T 41.4l fs. In this case, the intersection is shifted away in thenuclear coordinate space from itsfield-free

position for the entire time interval, t ,CI inwhich thewave packet passes through the (field-free) coupling region.
Therefore thewavepacket largely ‘misses’ the non-adiabatic coupling regionwhile propagating on the excited
adiabatic state, resulting in a suppression of the radiationless decay inNO2.

Here, we use a control fieldwith awavelength of l = 1600 nm. Importantly, the period of this field
( »T 5.3l fs) approximatelymatches theCI transit time t .CI Using the laser pulse centered at l = 1600 nm and
with a FWHM (full width at halfmaximum) duration of 6 fs ( t~ CI), we stronglymodify thewave packet
dynamics over the subsequent few tens of femtoseconds by re-shaping the nuclear wave packet during its CI
passage. Thewave packet dynamics is noticeably different when theCEP of the control pulse is changed by p 4,
corresponding to a control on the sub-femtosecond time scale.

We note that similar CEP control scenarios, using few-cycle (up to single-cycle)MIRpulses with cycle
durations comparable to the time scale of the nuclear dynamics, have been previously implemented for the
diatomicmoleculesNaI [69], LiF [70, 71] andD2 [72]. In these one-dimensional problems, the laser-induced
motion of the avoided crossing point is parallel to the propagation direction of the nuclear wave packet. In
contrast, in this workwe have the situation that the intersection pointmovesmainly perpendicular relative to
the nuclear wave packetmotion, resulting in very different transition dynamics.

The paper is organized as follows. In section 2we present themodel and the computationalmethodology
used in this work. The results are presented in section 3, togetherwith a discussion of theCEP-dependent
population dynamics at theCI and an analysis of themechanismbehind the laser control. Our conclusions are
given in section 4.

2. Computations

2.1. Electronic structure calculations
The ultrafast (femtosecond time scale) electronic relaxation ofNO2 via non-adiabatic transitions has been
widely explored both theoretically and experimentally [73–89].

Extensive static quantum chemical calculations ofNO2 PESs, using a broad spectrumof theoretical
approaches, covering single- andmulticonfigurational schemes and dynamically correlated and uncorrelated
methods are available in the literature [75, 78, 82, 90–117]. These calculations serve as a basis for the dynamical
simulations and have ultimately guided the interpretation of the complex spectroscopical features ofNO2. The
topological landscape of the A12

1 ground state PES, disregarding dissociation or peroxy isomerization regions, is
characterized by a globalminimumoccurring at anN–Oequilibriumdistance of = - R 1.154 1.23 Ae and at
anO–N–Obond angle of q =  - 132.7 137.5 (the experimental values are = - R 1.193 1.197 Ae and
q =  - 133.2 134.2 [118–123]). The A12

1 state is predicted to intersect with the upper electronic state B12
2

-0.96 1.48 eV above the globalminimumat = - R 1.242 1.311 Ae and q =  - 106.6 114 , leading to a
A12

1 B12
2 CI (the experimental values are = R 1.246 A,e q = 103.1 , and =T 1.21 eVe [124]), corresponding

to the energeticminimumof theCI seam. TheCI is located in the vicinity of theminimumof the B12
2 PES

( = - R 1.212 1.373 Ae and q =  - 101.0 102.8 ; expt.: = R 1.244 Ae and q = 102.6 [125]). A substantial
energy barrier separates the B12

2 minimum from a crossingwith the A22
1 state, almost at the linear geometry

[78]. Also at linearity, and high above the B12
2 minimum, the B12

1 state is calculated to be degenerate with the
electronic ground state A12

1 [78, 126, 127]. The number of interstate crossings increases with the excitation
energy, increasing the complexity of the high-lying excited PESs.

This work focusses on studying the effect of a control laser pulse on thewave packet dynamics at a CI, rather
than on a global description of the dynamics ofNO2.We therefore use a reduced-dimensionalitymodel for the
NO2PESs, comprising the two coordinates essential for the description of the internal conversion funnel [128].
These coordinates, which define the branching space of a CI, are the gradient difference and derivative coupling
vectors. In the case of theNO2molecule they correspond to the bending and the asymmetric stretchmodes, θ
and r ,a respectively, where ra is half the difference between the twoN–Odistances (RNO). The third internal
degree of freedom, the symmetric stretch coordinate, was constrained to its value at theMR-CISD
(multireference configuration interactionwith all single and double excitations) geometry of theCI (details
below). Another reason for choosing the reduced-dimensionalitymodel is the numerical cost of the 3D
calculations, given that a large number of simulations for different laser parameters is required to fully analyze
the physics underlying the discussed control scenario.
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Amulticonfigurational ansatz was used for the description of the degeneracy regions and excited state PESs.
The initial reference wave functionswere computed using theCASSCFmethod and the 6–311G* basis set. The
calculations were carried out inCs symmetry and state-averaged over the lowest two roots.Within theCs

symmetry point group, theC2v states A12
1 and B12

2 belong to the same irreducible representation ¢A ( ¢A12 and
¢A22 ), and canmix through the asymmetric stretchmode (ra). TheCASSCF active space consisted of 11 electrons

in nine orbitals, correlating to the atomic 2p orbitals. The electronic energies were optimized using theMR-
CISD approach, withCASSCF as the reference, employing theColumbusQuantumChemistry Package [129–
134]. Core (1s) orbitals were not correlated. Table 1 summarizes the calculated stationary points and interstate
crossing of the 2DPESs. TheMR-CISDminima andCI geometries are very close to the experimental structures
obtained in [118–125] and also in close coincide with previousMR-CID results [75, 78, 91, 95].

Adiabatic potential energies and dipolemoments were calculated on a product grid along the bending angle
θ(O–N–O) (80°–180°, step size qD = 1 ) and the asymmetric stretch coordinate ra (−0.6 to+0.6 a.u., step size
D =r 0.02a a.u.). The symmetric stretch coordinate wasfixed at = r̃ 1.259 As (its value at the CI geometry).
Figure 1 illustrates one-dimensional cuts of the calculated potentials.

The quantumwave packet dynamics calculationswere performed using the quasi-diabatic representation
[135, 136] (seefigure 1). The use of diabatic PESs avoids the treatment of divergent kinetic energy couplings at
the CI geometry, since the coupling is no longer described by the kinetic energy operator, but rather as a
potential coupling—a smooth function of the nuclear coordinates θ and ra. For the construction of diabatic
states, a number of schemes based on different approaches have been developed, for an overview see [17]. For the
present study, the diabatic electronic states were constructed using the orbital-based quasi-diabatization
procedure that is implemented inMOLPRO2009 [137, 138]. It relies on theminimization of the derivative

Table 1.MinimumandCI optimized geometries and energies of the A12
1 and B12

2

states at these points of the PESs relative to the A12
1 ground stateminimum.

RNO θ A12
1 energy B12

2 energy

(Å) (degrees) (eV)/(Hartree) (eV)/(Hartree)

A12
1minimum 1.203 133.7 0.00/0.000 3.25/0.119

B12
2 minimum 1.265 101.8 1.86/0.068 1.20/0.044

A12
1 B12

2 CI 1.259 107.3 1.25/0.046 1.25/0.046

Figure 1.One-dimensional cuts of the adiabatic potential energy curves (PECs), corresponding to the states ¢A12 (asterisks) and ¢A22

(squares), and of the diabatic PECs, corresponding to the states A12
1 (black solid line) and B12

2 (blue solid line) for C v2 symmetry.
(A) and (B): cuts along the bending angle θ at =r 0a a.u. (C2v symmetry) (A), and at =r 0.4a a.u. (B). (C) and (D): cuts along the
asymmetric stretch coordinate ra (the curves are symmetric with respect to =r 0a a.u.)passing through theminimumof the ¢A12 state
(C) and theCI geometry (D).
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couplings by employing the condition of configurational smoothness of diabatic states. Starting from a suitable
reference geometry, the diabatic electronic wave functions at neighboring geometries are determined by
maximizing the overlapwith the diabatic reference electronic wave function, usually the electronic
eigenfunctions at equilibrium geometry, using a unitary transformationmatrix. The solid lines infigure 1(A)
depict the diabatization result for the system constrained to C v2 symmetry ( =r 0a a.u.). As expected, the
adiabatic and diabatic curves are superimposed, since the potential coupling vanishes in C v2 symmetry. For
bending angles larger than that corresponding to theCI geometry (q > 107.3 ), the ground adiabatic state, ¢A1 ,2

coincides with the A12
1 state, while the excited adiabatic state, ¢A2 ,2 coincides with the B12

2 state. For q < 107.3
the situation is reversed. In comparison, figure 1(B)depicts the adiabatic and diabatic curves for ¹r 0a a.u.. The
adiabatic and diabatic curves are no longer entirely superimposed. In the vicinity of the CI point, where the
adiabatic states avoid each other, the diabatic curves cross. Panels 1(C), (D) represent potential energy curves
along the asymmetric stretch coordinate. The curves pass through theminimumof the A12

1 state (C) and theCI
geometry (D). Infigure 1(C), the states arewell separated and the adiabatic and diabatic curves coincide. In
figure 1(D), the two curves are slightly different away from the C v2 symmetry.

Finally, figure 2 shows the 2Ddiabatic PESs and the potential coupling surface. The solid black line in the
panels 2(A)–(C) indicates nuclear geometries at which the two diabatic surfaces intersect. TheCI (marked by the
red cross) is located at the point of the intersection between the two diabatic PESs, where the potential coupling
vanishes ( =r 0a a.u. and q ~ 107 ).

2.2.Wave packet dynamics calculations
The total wave function describing the system, Y( )r R, , is expanded in the basis of the two coupled diabatic
electronic states,j ( )r R;1 andj ( )r R; ,2

c j c jY = +( ) ( ) ( ) ( ) ( ) ( )r R R r R R r Rt t t, , , ; , ; . 11
d

1 2
d

2

Here ci
d (i= 1, 2) is the vibrational wave function associatedwith state i, r stands for all electronic coordinates,

and R designates nuclear coordinates, i.e., the asymmetric stretch coordinate ra and the bending angle θ.

Figure 2.Two-dimensional diabatic potentials: (A) ground diabatic potential energy surface V1
d, (B) excited diabatic potential energy

surface V2
d, (C) potential coupling surface V12

d . The solid black line indicates the nuclear geometries at which the two diabatic PESs
cross. The red cross indicates theCI geometry.
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We solve the following systemof coupled equations:
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whereTd denotes the kinetic energy operator (see below).V1
d (V2

d) and d1
d (d2

d) are the diabatic PES and the
diabatic permanent dipolemoment of state 1 (2), respectively. V12

d and d12
d describe the potential coupling and

the diabatic transition dipolemoment between the two diabatic electronic statesj1 andj ,2 respectively.
w f= +( ) ( ) ( )E et E f t tcos y0 CEP defines the laser pulse, where E0 is the peak electric field strength, f(t) is the

Gaussian pulse envelope,ω thefield frequency, fCEP controls the CEP of the pulse, and ey denotes the unit vector
along the y-axis. The propagation of the vibrational wave packets is performed entirely in internal coordinates.
The spatial orientation of themolecule in the calculations is therefore determined only by the elements of the
laser-molecule couplingmatrix, ·d E.d Themolecule is placed in the x–y plane, where the x-axis coincides with
the bisector of the bending angle θ. At this orientation, for symmetry reasons, only the y component of the
transition dipolemoment is non-zero forC2v configurations ( =r 0a a.u.) of themolecule. The proposed control
scheme suggests to irradiate themolecule while the vibrational wave packet passes through theCI, which occurs
forC2v configuration.Hence, only the y component of the control field contributes to the laser coupling.
Molecules with different orientations with respect to the laser polarization directionwill be affected similarly by
the control pulse, but the strength of the effect depends on the projection of the electric field vector on the y axis
of themolecule-fixed frame. Additional results obtained for different orientations of themolecule (not depicted
here) show that already amoderatemolecular alignment distribution of a »cos 0.52 is sufficient to observe the
effect of the control pulse discussed here. Suchmoderate alignment distribution is expected to be generated by
the excitation pulse. The reduced 2D vibrational kinetic energy operator, expressed in terms of the asymmetric
stretch coordinate ra and the bending angle θ, reads
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Here m = +( )m m m mN O N O with mN and mO denoting themass of the nitrogen and oxygen atoms,
respectively. A detailed description of the construction of this specific, reduced-dimensionality kinetic energy
operator is beyond the scope of this work [139]. A general recipe for the construction of amolecular kinetic
energy operator in curvilinear coordinates, includingmolecular systems subject to constraints, is extensively
described in [140–142].

We employ the direct product discrete variable representation (DVR)method for solving the time-
dependent Schrödinger equation (2). For the asymmetric stretch coordinate ra weuse theColbert–Miller sine
DVR [143], while for the bending angle θ, we utilize aGauss–LegendreDVR.Weuse =N 41ra

points for the ra—

grid, which ranges from−0.57 to+0.57 a.u., and =qN 90 points for the θ—grid, ranging from61° to 179°. The
time-dependent coupled equations (2) are then propagated by a split-operatormethod, using a time step of
Δt= 0.024 fs. At each time step, we also calculate the adiabatic ground and excited nuclear wave functions, cg

ad
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and c ,e
ad from the diabatic nuclear wave functions:
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wherematrix M diagonalizes the diabatic potential energymatrix:
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3. Results and discussion

3.1. Population dynamics
We initialize the coupled electron–nuclear wave packet dynamics at t= 0 fs by placing the lowest vibrational
state of the electronic ground state on the upper adiabatic surface, equivalent to an instantaneous, complete
Franck-Condon excitation of themolecular system, see figure 3(a).

Figure 3(b) shows the ensuing time evolution of the population of the two adiabatic states, c=( ) ∣ ( )∣P t ti i
ad 2

with = { }i g e, .The nuclear wave packet immediately starts to propagate towards smaller bending angles on the
upper adiabatic surface. After approximately 6 fs it starts to encounter theCI region for thefirst time.While
passing the coupling region, we can observe a strong non-adiabatic transition into the ground adiabatic state,
leading to an increase of the electronic ground state population in the time interval from6 to 12 fs, see
figure 3(b). The part of the nuclear wave packet that did not hop on the lower adiabatic surface during theCI
passage, but remained on the upper one, reaches its turning pointfirst, where it reflects, and then propagates
back towards the coupling region. The ensuing non-adiabatic transition during this secondCI passage leads to

Figure 3. (a)–(c) Field-free population dynamics. (a) Sketch of initialization offield-free dynamics. Cuts of the potential energy
surfaces along the bending angle θ at =r 0a a.u. of the ground (blue solid line) and excited adiabatic state (red solid line), and of the
diabatic state 1 (cyan dots) and 2 (magenta dots). At t= 0 fs, the lowest vibrational state (solid line) of the electronic ground state is
placed on the upper adiabatic surface as indicated by the arrow. (b)Population evolution of the ground (blue) and excited adiabatic
state (red). (c)Population evolution of diabatic state 1 (cyan) and 2 (magenta). The vertical orange lines in (b) and (c) highlight the start
and end time of thefirst CI passage. (d)Comparison between our 2D results and the 3D results presented infigure 2 of [85] (Reprinted
with permission from [85]. Copyright [2010], AIP Publishing LLC.) for the diabatic population evolution upon excitationwith a
Gaussian pumppulse centered at t= 0 fs and a FWHMof 8 fs. As different ab initio potential energy surfaces are used in bothworks,
we have adjusted the pump pulse wavelength toλ= 513 nm, compared toλ= 400 nmused in [85], to transfer the same amplitude to
the excited state. The subsequent field-free population evolution exhibits nearly the same characteristic time scale in both cases.
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the second increase of the population of the ground adiabatic state between 15.5 and 21.5 fs. The nuclear wave
packet evolving on the lower adiabatic surface, re-encounters theCI region later at ~t 25 fs. During this CI
passage, a substantial part of the nuclear wave packet is transferred back into the excited adiabatic state, leading
to the significant drop of the ground state population. Figure 3(b) shows that the strong non-adiabatic
transitions, which are accompanied by substantial population transfers between the two coupled states, occur
with a period of approximately 18 fs.

The strong non-adiabatic transitions observed here, reflect the diabatic-like behavior of thefield-free
dynamics ofNO2. Figure 3(c) shows the time evolution of the population of the two diabatic electronic states,

c=( ) ∣ ( )∣P t tj j
d 2 with = { }j 1, 2 .The smooth time-dependence of the diabatic population illustrates the

diabatic-like dynamics: Upon excitation, the nuclear wave packetmainly oscillates on the excited diabatic
surface,V ,2

d withmoderate population transfer between the two diabatic states, due to theirmoderate coupling
(see figure 2(C)).

Aswe use a reduced-dimensionality (2D)model ofNO2, it is worthwhile to compare the dynamics described
herewith that obtained for a full three dimensional treatment of the problem. For that we have performed
calculations similar to those presented byArasaki et al infigure 2 of [85], obtaining the population evolution of
the two diabatic states upon the interactionwith a pumppulse. The results are shown infigure 3(d). Sincewe
employ different ab initioPESs for the two electronic states, we have adjusted the pumppulse parameters
(frequency and intensity) so that the same amplitude is transferred to the excited state by the pump.Wefind that
the qualitative behavior of the subsequentfield-free population evolution, including thefirst two passages
through theCI, is in very good agreement. In particular, the population dynamics obtained by us, on the one
hand, andArasaki et al [85], on the other hand, exhibit nearly the same characteristic time scales.

As alreadymentioned above, the characteristic time, t ,CI that it takes the nuclear wave packet to pass through
the coupling region, is only t » 6CI fs. This is indicated by the vertical orange lines in the panels 3(b) and (c),
highlighting the start and the end time of thefirst CI passage. The time scale of the oscillations of afieldwith a
wavelength of 1600 nm, corresponding to a period of »T 5.3l fs, is thus comparable to this transit time t .CI

Hence, we use a 1600 nmcontrol pulsewith a FWHMof 6 fs and a peak intensity of ´5.6 1013 Wcm−2, see
figure 4(a). Importantly, we apply the ultrashort laser pulse in the same time interval, inwhich the nuclear wave
packet passes through theCI region for the first time ( ~t 6–12 fs), as indicated by the vertical orange lines in
figure 4(a).

It should be noted that for the specific control scheme discussed here, it is preferable to excite the systemby a
short, sudden kick, generating a coherent, well-localized initial wave packet on the upper state. This way the
CEP-dependent coherence imparted by the subsequent control pulsemanifests duringmuch longer dynamics
that follow. Thus, an ultrashort excitation pulse is desirable. For the sake of clarity, we initialize thewave packet
dynamics bymeans of a fictitious delta excitation.However, thanks to the continuous effort dedicated to the
generation of ever-shorter light pulses, nowadays, single-cycle and even sub-cycle pulses can be generated for a
wide range of central carrier frequencies using different state-of-the-art techniques [144–147], such as waveform
synthesizers.We have repeated our calculations for a single-cycle pump pulse, resonant with the A12

1 to B12
2

transition at the A12
1 equilibrium geometry and a peak intensity of ´2.6 1013 Wcm−2 (for such a short pump,

excitation is still a nearly linear function of intensity), with virtually identical results (not depicted here). In case
of substantially longer excitation pulses, additional effects induced by the overlap of the pump and control pulse
need to be considered.

Panel 4(b) shows the laser-modified time evolution of the adiabatic population of the two states.We notice
two things: (i) thefirst population transfer at the CI is stronglymodified by the laser pulse, and (ii) the second
and subsequent population transfers at theCI are largely suppressed, even though the pulse is off at ~t 18 fs.
The results shown infigure 4(b) correspond to calculations using a pulse with aCEP of f = 0.CEP In panel 4(d),
we present the evolution of the laser-modified population of the excited adiabatic state obtainedwith the same
pulse, but different CEP: f p= 4CEP (black curve), and f p= 2CEP (green curve), see panel 4(c). Our results
show that the dynamics at the CI are sensitive to theCEPof the pulse, revealing the potential of its sub-cycle, and
thus sub-femtosecond control.

The significantmodification of the population dynamics indicates strong laser-induced changes of the PESs
and couplings. To gain a better insight into the process responsible for this CEP-dependentmolecular response,
it is useful to study the laser-inducedmodifications of the nuclear wave packet, as can be seen in the next section.

3.2.Wave packet dynamics
Figure 5 shows the evolution of the nuclear probability density, in the absence of the control field, integrated
over the bending angle θ, i.e., as a function of the asymmetric stretch coordinate ra and time t. Panel (a)
corresponds to the upper adiabatic surface, and panel (b) to the lower adiabatic surface.
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Let us start with panel (a): at t= 0 fs, the initial probability density is that of the lowest vibrational state of the
electronic ground state, in accordance with the chosen initial conditions. Panel (a) shows that, while propagating
along the reaction coordinate θ towards theCI, thewave packet spreads just a little along the asymmetric stretch
coordinate r .a At ~t 6 fs, the nuclear wave packet has reached theCI region and the first non-adiabatic
transition takes place, apparent by the emergence of the substantial nuclear probability density on the lower
adiabatic surface, see panel (b). Note that the part of the nuclear wave packet that remains on the upper surface

Figure 4. Field-modified population dynamics. (a)Control pulsewithwavelength l= 1600 nm, peak intensity = ´I 5.6 100
13

W cm−2, FWHM6 fs. (b)Population evolution of ground (blue) and excited adiabatic state (red)without pulse (dashed lines) and
with the pulse shown in panel (a) (solid lines). The population dynamics are significantlymodified by the laser pulse. (c) Same control
pulses as in (a), butwith different carrier-envelope phases f :CEP f = 0CEP (red), f p= 4CEP (black), f p= 2CEP (green). (d)
Population evolution of excited adiabatic statewithout pulse (red dashed line) andwith the pulse shown in panel (c)with f = 0CEP
(red solid line), f p= 4CEP (black solid line), f p= 2CEP (green solid line), respectively. The population dynamics are CEP
dependent. The vertical orange lines in (a), (b), (d) highlight the start and end time of thefirst (field-free)CI passage.

Figure 5. Field-free nuclear probability density evolution on the upper (a) and lower adiabatic surface (b) integrated over the bending
angle θ as a function of the asymmetric stretch coordinate r .a The vertical orange lines highlight the start and end time of thefirst CI
passage. The horizontal red line indicates =r 0a a.u..
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develops a node at =r 0a a.u. after passing theCI7; a signature of destructive self-interference of thewave packet
due to the geometric phase effect [148–152]. At t∼ 15 fs, the part of thewave packet still evolving on the upper
surface after thefirst CI passage, reaches its turning point. There it gets compressed, explaining the increase of
the probability density. Shortly after that, the nuclear wave packet re-encounters the CI, resulting in the further
increase of the ground state population around ~t 18.5 fs, see figure 3(b). After this secondCI passage, the
population of the excited state is only∼5%, and, consequently, panel (a) shows virtually no nuclear probability
density from t∼ 20 to t∼ 25 fs.

Let us turn to panel (b): at t∼ 17 fs, the part of the nuclear wave packet, which propagates on the lower
surface, reaches its turning point, clearly evident from the substantial increase of the nuclear probability density
around =r 0a a.u.. Then, 8 fs later (t∼ 25 fs), thewave packet reaches theCI, wherewe can observe another
strong non-adiabatic transition, this time into the excited adiabatic state. Again, we can see the formation of a
node due to the geometric phase effect in that part of thewave packet, which remains on the same surfacewhen
passing theCI region, here, on the lower adiabatic surface.

Howdo thesewave packet dynamics change in the presence of the control pulse? Figure 6 shows the
evolution of the nuclear probability density corresponding to the excited adiabatic statewith andwithout the
control pulse included in the calculations, and for the different CEP values of the pulse shown infigure 4(c).

Let usfirst focus on the time interval from t= 0 to t= 20 fs, when the pulse is acting on themolecule.We
note that theCI dynamics have dramatically changed under the influence of the pulse and that the nodal
structure, which is apparent in the field-free case (panel (a)), does not emerge (independently of theCEP). As the
formation of the node is a consequence of the geometric phase effect at the CI [148–152], the absence of the
nodal structure can be understood in terms of a considerable change of theCI region caused by the control pulse:
The strong laserfield changes the shapes of the PESs, in particular in the coupling region, in away similar to the
observations that have beenmade in prior studies.

Figure 6.Nuclear probability density evolution on the excited adiabatic state without pulse (a), andwith pulse (seefigure 4(c))with
CEP f = 0CEP (b), f p= 4CEP (c), and f p= 2CEP (d), respectively, integrated over the bending angle θ as a function of the
asymmetric stretch coordinate r .a The vertical orange lines highlight the start and end time of thefirst CI passage. The horizontal red
line highlights =r 0a a.u..

7
Note that the plotted probability density is integratedwith respect to the bending angle θ, so that the instant of time at which the node

becomes apparent in thefigure is not identical to the instant of timewhen the leading edge of the wave packet encounters theCI, but rather
when the entire part of thewave packet remaining on the upper surface has passed the coupling region.
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In order to visualize the reshaping of the PESs, we have calculated the laser-induced quasistatic PESs by
diagonalizing the time-dependentmatrix = +( ) ( )Q V Wt t ,d d d composed of the diabatic potential energy
matrixV d and the time-dependent laser couplingmatrixW d (see section 2.2). The laser-induced quasistatic
PESs, ( )V ti

QS with = { }i g,e , are the eigenvalues of Qd calculated for each instant of time.Wefind that using
such instantaneous basis and the instantaneous transformation of the PES landscape allows for an intuitive and
clear interpretation of our results.

Let usfirst consider the case, inwhich theCEP of the control pulse is f = 0.CEP Figure 7 shows cuts of the

laser-induced, quasistatic PESs,Vi
QS with = { }i g e, , along the coupling coordinate ra for different values of the

bending angle θ and for different instants of time during the pulse (see figure 4(c)): (i) just before the turn-on of
the pulse at t= 0 fs (panel (a)), (ii)when thefield strength reaches itsfirst positivemaximumat ~t 7 fs (panel
(b)), and (iii)when thefield strength reaches its negativemaximum (equivalent to its peak value) at ~t 9.4 fs
(panel (c)). It is important to note that the cuts were taken at those values of the bending angle θ, at which the
laser-modified PESs touch.

Panel (a) corresponds to the case when the laser pulse is off. Therefore the position of the intersection is
identical to that of the CI in the field-free case, i.e., at =r 0a a.u. and q ~ 107 .At ~t 7 fs, when the electric
field strength is ~ +E 0.025 a.u., the position of the intersection has changed to ~ +r 0.27a a.u. and q ~ 110 .
At ~t 9.4 fs, the electric field strength is ~ -E 0.04 a.u. and the position of the intersection hasmoved to

~ -r 0.39a a.u. and q ~ 112 .
The red dots in panel 7(d) indicate the entire trajectory that the intersection position followswhile the laser

pulse is acting on the system, as a function of the nuclear coordinates ra and θ. Following the field’s oscillations,
the position of the intersection ‘swings’ between positive and negative values of the asymmetric stretch
coordinate r ,a depending on the sign of the electric field. The larger the absolute value of the field strength, the
greater the displacement of the intersectionwith respect to =r 0a a.u. The same applies to the shift of the

Figure 7. Laser-modified coupling region. (a)–(c)Cuts of laser-induced, quasistatic potential energy surfaces (PESs) along the
coupling coordinate ra for different bending angles θ and instants of time during the pulse (see figure 4(c)): (a) q ~ 107 and t= 0 fs,
(b) q ~ 110 and ~t 7 fs, and (c) q ~ 112 and ~t 9.4 fs. The cuts are taken at those angles θ, at which the laser-modified PESs
touch. (d)The red dots on the PES of the (field-free) excited adiabatic state indicate the trajectory of the intersection position during
the control pulse as a function of the nuclear coordinates ra and θ.
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intersection geometrywith respect to the bending angle θ, however, the shift occurs only towards larger angles
compared to thefield-free CI geometry, q ~ 107 .CI

The position of themoving intersection is determined by the elements of both the diabatic potential energy
matrixV d and the laser couplingmatrix ( )W t ,d and, in particular, their symmetry properties with respect to the
nuclear coordinates. All thesematrix elements are either symmetric or antisymmetric with respect to the
couplingmode r .a In this study, we found that the transition dipolemoment (in y direction)makes themost
significant contribution to the change of the topological landscape of the coupling region. Based on the behavior
of the intersection trajectory corresponding to the pulsewith f = 0CEP (panel (d)) and the circumstance that the
transition dipolemoment is symmetric with respect to =r 0a a.u., we can easily predict the behavior of the
trajectories caused by the pulses with different CEP. For a CEPof f p= ,CEP the sign of the electric field is
inverted. In this case, the trajectorywill bemirror-symmetric with respect to =r 0a a.u. to the f = 0CEP
trajectory. For aCEPof f p= 2,CEP where the absolute value of themaximumandminimumof thefield
strength is equal (see figure 4(c)), the entire trajectory is symmetric with respect to =r 0a a.u..We stress that this
analysis is based on the negligible contribution of the permanent dipolemoments of the two states, which are
antisymmetric with respect to the couplingmode r .a

Let us now return to the interpretation of the nuclear probability densities shown infigure 6. The initial
nuclear wave packet has even symmetry with respect to =r 0a a.u., which is retained until it reaches theCI
region for thefirst time.

In thefield-free case, the CI is located at =r 0a a.u., whichmeans that the part of the nuclear wave packet
that passes the CI region on ‘one side’ of theCI ( >r 0a ) is equal to that propagating on ‘the other side’ of theCI
( <r 0a ). In accordancewith the geometric phase effect, the two parts that propagate along the different paths
acquire a phase shift of p+ 2 and p- 2, respectively. Hence, behind theCI, at =r 0a a.u. they interfere
destructively and thewave packet acquires a node.

However, in the presence of the laser pulse, theCI region is subject to significant laser-induced reshaping
while the nuclearwave packet is passing it. As a result, thewave packet does not experience the static CI at =r 0a

a.u. while (mainly)propagating along =r 0a a.u. towards smaller bending angles θ. But, instead, the intersection,
which ismoving primarily perpendicular to thewave packet (between ~ -r 0.3a a.u. and ~ +r 0.4a a.u. around
q ~ 110 , seefigure 7(d)), ‘cuts sideways’ into it, sculpting it in the coordinate andmomentum space. To
illustrate this dynamic process, wehave included amovie in the supplementarymaterial, presenting the nuclear
wave packet dynamics on theupper surface, aswell as the trajectory of themoving intersection.

Since the intersection trajectory varies with theCEP, thewave packet passage through theCI region is
sensitive to theCEPof the control pulse, explaining the differences apparent in the panels 6(b)–(d) for the time
interval from ~t 6 to ~t 12 fs. The different evolution of the nuclear probability densities illustrates clearly
how the ‘moving intersection’ sculpts the nuclear wave packet differently, depending on the pulse’s CEP.

Let us turn our attention to the ensuing nuclear probability density evolution from t= 20 to t= 65 fs, long
after the end of the laser pulse.We can see that the subsequent evolution of the nuclear wave packet, including
further (field-free) passages through theCI, retains thememory of the control pulse and its CEP. Both the shapes
of the nuclear wave packets at each PES and the relative phase between them, determined by the interactionwith
the ultrashort pulse during thefirst CI passage, control the field-free dynamics on themany tens of femtosecond
time scale.

Figure 6 illustrates how the laser-controlled re-shaping of the nuclear wave packet during the first CI passage
breaks the symmetry of thewave packet with respect to the couplingmode r .a The ‘rocking’ time-dependent
laser-dressed quasistatic PESs, see panels 7(a)–(c), drive the nuclear wave packet, which in the field-free case
propagates symmetrically to =r 0a a.u., on an oscillatory trajectory around =r 0a a.u.. In otherwords, the
modification of the coupling region is accompanied bymomentum ‘kicks’ from the control pulse perpendicular
to themain propagation direction of thewave packet. As a result, no nodal structure emerges in the nuclear
probability densities shown in panels 6(b)–(d) for >t 25 fs. In fact, for >t 18 fs thefield-free static CI is
present, however, following its oscillatory trajectory, the nuclear wave packet no longer approaches theCI region
‘symmetrically’.

In the limiting case of laserfields with periodsmuch longer compared to theCI passage time of the nuclear
wave packet, investigated byArasaki et al in [67, 68], the intersection can be ‘moved away’ from its field-free
position for the entire (ultrashort) passage time. In this situation thewave packet can ‘miss’ the coupling region
almost fully, depending on the strength of the field.

4. Conclusions

Using the example of theNO2molecule (in restricted dimensionality), we have analyzed the possibility of sub-
laser-cycle control of nuclearmotion through theCI.We have found that adjusting the cycle of the control laser
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pulse to the charateristic transit time through theCI leads to a dramaticmodification of thewave packet
dynamics, sensitive to theCEPof the control pulse. First, themotion of theCI induced by the control pulse
sculpts thewave packets on both PESs and controls the branching ratio on the sub-cycle time scale. Second, the
modifications of thewave packets on the coupled PESs, and in particular the altered electronic coherence
between them, affect the furthermotion through theCI long after the control pulse is over. A similar re-shaping
of thewave packet at the CI region can also be achieved by using a pulsewith another near- orMIR laser
wavelength (such as an 800 nmpulse), however, awell-controlled laser-induced re-shaping requires the
application of a control pulsewith a period that is comparable to the characteristic time of theCI passage of the
nuclear wave packet. In this case, the sub-laser-cycle control of the introducedmodifications ismaximized.

The changes in thewave packet dynamics stimulated by the control pulse can bemonitored bymeans of
femtosecond time-resolved photoelectron spectroscopy [153], an established experimental technique for
measuring excited state dynamics in polyatomicmolecules, including ultrafast non-adiabatic processes [154].
The photoelectron angular distributionsmeasuredwith standard femtosecond laser pulses and velocitymap
imaging techniques can be comparedwith theoretical predictions obtainedwith extendedwave packet dynamics
simulations including the interactionwith the ionizing probe pulse and geometry- and energy-dependent
photoionizationmatrix elements. High-harmonic spectroscopy constitutes another sensitivemeasuring
technique, where thewave packet dynamics is encoded in the high-harmonic radiation emitted at different time
delays upon excitation [155]. Bothmethods, and theirmore sophisticated counterparts such as femtosecond
time-resolved photoelectron-photoion coincidence imaging, have already been used in the past to study both
experimentally and theoretically thewave packet dynamics at the A12

1 B12
2 CI ofNO2, see e.g. [68, 80–

83, 85, 87–89].
In this work, we have considered a reduced-dimensionalitymodel. Howwould the full 3D nature of the

dynamics affect the proposed control mechanism? In 2D, the CI is a single point, while in 3D it is a 1D seam
ofC2v geometry. According toMahapatra et al (see figure 1(a) in [75]), the CI seam depends weakly on the
symmetric stretch coordinate, i.e., for varying r ,s it varies little with respect to the bending angle θ. Thus, for
all relevant symmetric stretch components, the CI seamwill be reached by the wave packet synchronously.
As the laser-controlled CI slices through the wave packetmainly along the asymmetric stretch coordinate, it
should happen virtually simultaneously for all relevant rs. In general, as long as such synchronization is
much better than 0.5 of the laser cycle, the proposed control mechanism should remain unaffected.
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