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Junctions provide a wealth of information on the symmetry of the order parameter of super-
conductors. We analyze normal-superconducting and Josephson junctions involving twisted bilayer
graphene (TBG). The first junctions describe the coupling between the scanning tunneling micro-
scope (STM) tip and TBG, while monolithic Josephson junctions and SQUIDs have been fabricated
by applying local gate voltages to TBG. We compare superconducting phases which are even or
odd under valley exchange (s- and f - pairings). Andreev reflection processes in STM experiments
and the critical current in Josephson junctions show a strong dependence on the nature of the
superconducting electrons.

Introduction. Multilayers of graphene host a myriad of
exotic correlated and topological phases [1–22]. Perhaps
most interesting and enigmatic among them is super-
conductivity, possibly with unconventional pairing sym-
metries and mechanisms, observed in alternating-twist
graphene stacks of up to five layers [23–29] and in Bernal
bilayer and rhombohedral trilayer graphene [30–33]. Cru-
cially, superconductivity violates the Pauli limit for spin-
singlet pairing [28, 30–34] and has been observed in
settings that break time-reversal symmetry (TRS) [35],
strongly suggesting a spin-triplet pairing in these materi-
als. However, the pairing may still be a mixture of singlet
and triplet [36], and the exact symmetries involved (s-,
p-, d- and/or f -) are still unknown despite intense theor-
etical and experimental efforts to uncover them.

Recently, several experiments have studied these un-
conventional superconducting states using transport
measurements: either with a scanning tunneling micro-
scope (STM) tip [16, 37] or with Josephson junctions
(JJs) [38–42] and Superconducting Quantum Interference
Devices (SQUIDs) [43]. In the former setup, by compar-
ing the transmission between the STM tip and the su-
perconducting surface in the weak and strong-coupling
regimes, one can gain important insights about the sym-
metry of the order parameter. For instance, the exper-
imental observations, such as the peak in the subgap
conductance [16], seem inconsistent with s-, p- and d-
wave pairings [36, 44]. In the latter setups, the overlap
of the superconductors’ wavefunctions at the junction’s
link gives rise to a zero-frequency supercurrent whose
magnitude and superconducting phase-dependence carry
characteristics of the pairing symmetry [45–47].

Building on these experimental insights, we argue
in this Letter that transport measurements in junc-
tions are ideal probes of the pairing symmetry in mul-
tilayer graphene superconductors. This is similar to the
elucidation of d-wave pairing in cuprate superconduct-
ors [48, 49]. The Fermi surface of these graphene-based
systems contains two valleys. We consider superconduct-
ing order parameters that are either even or odd un-

der valley exchange, which in the absence of spin-orbit
coupling correspond to spin-singlet s-wave superconduct-
ivity or spin-triplet f -wave superconductivity respect-
ively. Comparing transport characteristics in these two
scenarios, we find that subgap conductance in STM-
superconductor junctions is much higher for f -wave than
for s-wave pairing due to enhanced Andreev reflection,
in agreement with experiments [16]. In mixed f -wave/s-
wave Josephson junctions, we observe that the critical
current dramatically depends on the angle between the
junction and the graphene lattice axis. These results put
forward f -wave pairing as a leading candidate for the
pairing symmetry of twisted bilayer graphene, which is
also consistent with previous theoretical models based on
Coulomb-interaction-mediated Cooper pairing [50, 51].
Based on these calculations, we also propose new exper-
imental signatures for future investigations to ascertain
whether TBG and related materials are f -wave super-
conductors.

STM tip-superconducting TBG junction. The model.
General features of transport in normal-superconductor
junctions are described in Ref. [52]. The coupling between
the two electrodes is given by a scattering matrix, de-
termined by a dimensionless transmission amplitude, T .
The model has been extended in [36, 44]. As in Ref. [52],
the normal metal tip and the superconducting electrode
are described in terms of in and out going single chan-
nels. On the superconductor, the states in the channel
are defined as suitable averages in momentum space of
the quasiparticles. The momentum dependence of the gap
leads to a momentum dependence of the mixing between
electron and hole-like states in the superconductor, and it
modifies the transmission of the junction, both in the tun-
neling and in the contact regimes. The Blonder-Tinkham-
Klapwijk (BTK) model [52] has also been extended to
strongly coupled superconductors, where the chemical
potential can be below the bottom of the band [53, 54].

We describe the metal−superconductor junction as one
ingoing normal channel, which represents the tip, and
two outgoing superconducting channels, which represent
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Figure 1. Transport in a STM tip-superconducting TBG junction. (a) Sketch of the model for the junction used to calculate
its transport properties. See text for details. (b-e): normal and Andreev reflections (top) and total conductance (bottom) for
junctions with spin-singlet s-wave (dashed) and spin-triplet f -wave pairing (solid), in the perfect contact limit. (b) With equal
Fermi velocities in all channels, ttip = tsc,K = tsc,K′ = 1, ttip,K = ttip,K′ = 1/

√
2, tK,K′ = 0, ∆K = 0.05,∆K′ = ±0.05. (c)

With a large Fermi velocity mismatch in the normal and superconducting channels: ttip = 10, ttip,K = ttip,K′ = 10/
√
2, others

as in (b). (d) With Fermi velocity mismatch and intervalley scattering tK,K′ = 1, others as in (c). (e) With Fermi velocity
mismatch, intervalley scattering and spin-orbit coupling: ∆K = 0.05,∆K′ = ±0.02, others as in (d).

the two valleys in TBG. The signs of the gaps in these
channels can be equal, describing a spin-singlet s-wave
superconductor, or opposite, describing a spin-triplet f -
wave superconductor [55]. The model can also be applied
to an Ising superconductor [33] in a system with strong
spin-orbit coupling, characterized by spin-valley locked
Cooper pairs of the type |K, ↑;K ′, ↓⟩.

The three channel model described above is discretized
as a tight-binding model, see Fig. 1(a). The normal chan-
nel is described by nearest-neighbor hopping ttip, which
determines its Fermi velocity and density of states. The
superconducting channels are described by two nearest
neighbor hoppings, tsc,K and tsc,K′ , and two gaps, ∆K

and ∆K′ . The coupling between the normal channel and
the two superconducting channels is described by the
hoppings ttip,K and ttip,K′ . Without loss of generality,
we assume that the Fermi energy is ϵF = 0, so that
each channel has exact electron-hole symmetry. Finally,
we consider that the tip is a local perturbation which
can induce intervalley scattering, parametrized by an-
other hopping, tK,K′ .

We solve the transmission of the junction by matching
incoming and outgoing waves in the three channels. If the
energy ϵ is within the superconducting gaps, we use evan-
escent waves in the superconducting channels. For each
energy, there are four propagating or evanescent waves
in each channel. We assume that there is an incoming
wave of electron character and amplitude 1 in the tip
channel. In the same channel, there can be one electron
and one hole outgoing channels, describing normal and
Andreev reflection, with amplitudes RN and RA, respect-
ively. In each of the two superconducting channels there

can be two decaying evanescent waves, when the energy
is within the gap, or two outgoing propagating waves.
We describe the four amplitudes as Ti,j , where i = K,K ′

stands for the channel, and j = 1, 2 stands for the wave-
function within each channel. The transport properties of
the junction are determined by these six amplitudes. The
conductance of the junction is G = 1−|RN |2+|RA|2. The
matching conditions involve the amplitudes of the wave-
functions at the three sites which describe the junction.
The equations can be found in Ref. [56].

STM tip-superconducting TBG junction. Results.
When the Fermi velocities in all channels are equal, the
tip channel merges smoothly into the even combination
of the K and K ′ channels and the junction behaves as
described by the BTK theory in the regime of perfect
contact, see Fig. 1(b). For s-wave pairing, and at zero
voltage, Andreev scattering leads to a conductance twice
as large as a single normal channel [52]. For f -wave pair-
ing, negative interference between the two hole channels
cancels Andreev reflection. This cancellation can be ex-
pected whenever the order parameter has a sign change
between states related by TRS [44]. At high voltages the
conductance reduces to the conductance of a single chan-
nel in both cases.

The bandwidth and Fermi velocity in TBG are con-
siderably smaller than in a normal metal. This Fermi
velocity mismatch induces elastic back-scattering in the
normal phase, which reduces the conductance above the
gap, see Fig. 1(c). Subgap Andreev reflection for s-wave
superconductivity is strongly suppressed, and it remains
zero for the f -wave phase, for a detailed explanation see
Ref. [56]. The tip can also induce a perturbation on the
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superconductor, on scales comparable to the atomic spa-
cing. Such a perturbation will induce intervalley scatter-
ing. Fig. 1(d) shows results obtained for an intervalley
coupling comparable to the bandwidth of the supercon-
ductor. This perturbation can be considered as disorder
which does not violate TRS. The presence of intervalley
scattering does not change significantly the conductance
of the junction in an s-wave superconductor, in agree-
ment with Anderson’s theorem [57]. On the other hand,
it is a pair breaking perturbation in an f -wave supercon-
ductor, which induces subgap states, see Ref. [56]. These
states allow for subgap Andreev reflection, as shown in
Fig. 1(d). The subgap conductance of the junction is
strongly enhanced by intervalley scattering in a f -wave
superconductor.

Recent transport experiments [32, 33] reveal that prox-
imity induced spin-orbit coupling promotes the supercon-
ducting properties of Bernal bilayer graphene. An effect
of spin-orbit coupling is to break the equivalence between
the Cooper pairs |K, ↑;K ′, ↓⟩ and |K, ↓;K ′ ↑⟩. In the
model studied here, the spin-orbit coupling makes the
two channels inequivalent. Results are shown in Fig. 1(e).

Josephson junctions. The model. For the study of JJs,
our setup consists of a TBG crystal, in which the elec-
trodes are superconducting and the weak link is in a nor-
mal metal or band insulating phase, as shown in Fig. 2(c).
We start from a tight-binding, non-interacting Hamilto-
nian H0 [58] that includes Hartree electron-electron in-
teractions through an electrostatic potential [59, 60]. The
parameters in the tight binding model are scaled, such
that the central bands of a TBG with twist angle θ are
approximated by the central bands of an equivalent lat-
tice with twist angle λθ, with λ > 1 [61–63], see Fig. 2(a).

The critical current comes from second order perturb-
ation theory and is the derivative of the free energy E
with respect to the superconducting phase difference ϕ:

I =
∂E

∂ϕ
. (1)

To obtain the energies of the TBG junction, we use the
Bogoliubov-de Gennes formalism,

HBdG |Ψ⟩ =
(
H0 − ϵF f(∆)
f†(∆) ϵF −H0

)(
Ψe

Ψh

)
= E

(
Ψe

Ψh

)
,

(2)

where ϵF is the Fermi energy. Again, we compare s-wave
pairing, which we model with a on-site attractive Hub-
bard term f(∆) = −∆S1, and f -wave pairing, which res-
ults from Haldane-like hoppings [64, 65] that break TRS
and allow an electron excitation to convert to a hole ex-
citation via second nearest-neighbor imaginary intralayer
hoppings, see Fig. 2(b).

Josephson junctions. Results. Figure 3(a) compares
the current-phase relations (CPRs) of TBG JJs with s-

Figure 2. (a) Low-energy bandstructure of TBG at θ ≈ 1.08◦

and filling n = −2.4, with scaling (red) and without scaling
(blue). (b) f -wave superconducting pairing scheme. (c) Cent-
ral part of the lattice of the TBG Josephson junction [66, 67].
The electrodes are superconductors with a phase difference of
ϕ and the middle region, with a length of four moiré periods,
is metallic or insulating. The rhombus is a unit cell of TBG.

and f -wave pairings in multiple configurations. CPRs can
be measured with a SQUID geometry [43]. In SNS JJs
the CPR is skewed, due to high transmission of Andreev
bound states (ABS), like the one in (d). We find that
ABS carry over 80% of the current in these junctions. In
contrast, in SIS junctions the current comes from tunnel-
ling states, so the CPR is sinusoidal, in agreement with
Ambegaokar-Baratoff theory [68]. An exception occurs
when the insulating gap in the link is comparable to the
superconducting gap, leading to skewness and large cur-
rents, see Fig. 3(e-f). We note that the authors of Ref. [43]
report a sinusoidal CPR in TBG, without skewness, des-
pite having a SNS JJ. This may be due to low transmis-
sion in the junction [47]. Fig. 3(b) shows the critical cur-
rent for all JJs as a function of twist angle. The current
in SNS JJs increases with twist angle, suggesting that
larger Fermi velocities compensate the reduced density
of states. The type of pairing, s-wave or f -wave, plays
a minor role when both electrodes are equal, compare
dashed and solid lines in Fig. 3(a-b). In fact, electron-
hole asymmetry is much more relevant, e.g. the current
in SIS junctions with fillings −2.4/4/−2.4 can be over two
orders of magnitude larger than with 2.4/−4/2.4 due to
the asymmetry in the size of the gaps between narrow
bands and electron- or hole-like remote bands.

Ref. [38] reports a significant length dependence of the
critical current in JJs prepared in mixed configurations,
e.g. with the electrodes doped near one superconducting
dome and the link near the other. This indicates that the
superconducting pairing symmetry in the electron and
hole domes may differ. The results in Fig. 3(c) for mixed
f -wave/s-wave TBG JJs propose a way to verify the hy-
pothesis. For these JJs, the critical current dramatically
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Figure 3. Current-phase relation in twisted bilayer graphene Josephson junctions. (a) For near magic-angle junctions with
different pairing symmetry: spin-singlet s-wave (dashed) or spin-triplet f -wave (solid), for electron and hole superconducting
domes (fillings n = ±2.4), with a metallic (SNS) or insulating link (SIS). In SIS junctions with n = +2.4 (−2.4), the chemical
potential of the link is placed in the middle of the gap between the flat bands and the hole-like (electron-like) remote bands.
We set the superconducting gap to 1 meV [16]. θ = 1.06◦ unless otherwise specified. (b) Critical current versus twist angle for
all configurations. (c) Current-phase relation in mixed f -wave/s-wave junctions, nearly parallel to the graphene armchair or
zigzag directions. (d) Subgap spectra at 1.06◦. Inset: charge map of an Andreev bound state (ABS). (e) Critical current in SIS
JJs compared to the difference between the superconducting and insulating gaps, as a function of twist angle. (f) Sketch of the
bands in the different regions of a SIS junction.

depends on the angle between the junction and the lat-
tice. A similar result in non-superconducting junctions
was found in Ref. [69]. The critical current is sizeable
when the junction axis is nearly parallel to the graphene
armchair direction, but close to zero when parallel to the
zigzag direction. As long as the perpendicular momentum
is conserved, the zigzag JJ suffers destructive interfer-
ence of the superconducting pockets along the green lines
drawn in Fig. 3(c). Also, the CPRs have a period of π,
half the one of standard JJs. The origin of this effect is
the existence of two sets of energy levels, due to coupling
of the s-wave pocket to the two f -wave pockets, which
have an intrinsic phase difference of π [46, 70]. Further-
more, the CPR shows a π-junction behaviour, i.e. it is
first negative [47, 71]. A requisite for these phenomena is
that the triplet electrode is spin unpolarized, otherwise
the current is zero due to spin conservation. The same
occurs in a one-dimensional toy model [56, 72].

Discussion. We have studied the role of the super-
conducting order parameter in transport through super-
conducting TBG junctions. We focus on s- and f - wave
pairing (even and odd valley combinations), as these two
choices are equally favored by long range interactions,
either attractive or repulsive [73].

For a junction between a normal STM tip and super-
conducting TBG, we find a pronounced enhancement of

subgap tunneling for an f -wave order parameter, due to
Andreev states induced by the tip, in agreement with
the experiment [16]. f -wave is also consistent with the
V-shaped densities of states seen in the weak coupling
regime [74].

We have calculated the critical current, and the
current-phase relation for different types of Josephson
junctions. The current in SIS junctions peaks when the
gap between narrow and remote bands is similar to the
superconducting gap. Subgap Andreev states in SNS
junctions are mostly localized in AA regions.

Josephson junctions where both electrodes are either
s- or f -wave superconductors show similar features, un-
like the s- and p- cases considered in Ref. [75]. On the
other hand, the critical current in mixed (s and f) junc-
tions depends strongly on the orientation of the junc-
tion with respect to the graphene lattice axes, with max-
ima for armchair junctions, and zeroes for zigzag junc-
tions. Hence, mixed junctions can provide useful inform-
ation about the superconducting order parameter. Such
junctions can exist in various setups: i) different super-
conducting regions in the phase diagram of TBG show
different order parameters [38], ii) the superconducting
state changes locally because of the spin-orbit coupling
induced by a substrate [32], iii) superconducting TBG is
combined with s-wave proximitized graphene [76, 77].
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Finally, we note that some of the results presented
here for twisted bilayer graphene, in particular those for
STM tip-superconductor junctions and mixed Josephson
junctions, apply equally well to other twisted graphene
superconductors [26–29], and most likely also to Bernal
bilayer and rhombohedral trilayer graphene [30–33].
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SUPPLEMENTARY INFORMATION

S1. STM TIP-SUPERCONDUCTOR JUNCTIONS

Equations

There are six equations relating the scattering amplitudes, as each node leads to an equation for the electron part
of the wavefunction, and to another equation for the hole part, see Fig. 1(a). These equations are:

ϵ(1 +RN ) = ttip(e
∗
N +RNeN ) + ttip,K
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+
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(S1)

where RN , RA, TK,1, TK,2, TK′
1
, TK′,2 are the normal reflection coefficient, the Andreev reflection coefficient (asso-

ciated to the tip electron and hole channels, respectively), and the transmission coefficients for the electron and hole
channels in each valley, ϵ is the energy, and:
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and similar expressions for K ′.
The model can be extended to intravalley superconducting gaps with angular dependence, like the cases discussed

in Ref. [44]. Each individual scattering angle can be treated as an independent channel. Reflection and transmission
coefficients need to be defined for each angle, and the total currents will be given by integrals over all angles.

http://dx.doi.org/ 10.1073/pnas.1108174108
http://dx.doi.org/ 10.1073/pnas.1108174108
http://dx.doi.org/10.1103/PhysRevB.80.205408
http://dx.doi.org/10.1103/PhysRevB.80.205408
http://dx.doi.org/ 10.1070/1063-7869/44/10s/s29
http://dx.doi.org/ 10.1143/ptp.44.1525
http://dx.doi.org/ 10.1143/ptp.44.1525
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Subgap Andreev conductance.

The enhancement of the conductance for voltages below the superconducting gap discussed in Ref. [52] arises from
processes where an incoming electron is reflected as a hole, or vice versa. In an s-wave superconductor, and in the limit
of perfect transmission, these processes lead to a conductance which is twice the conductance in the normal state,
as shown in the BTK theory [52]. In an s-wave superconductor, an electron is injected into the superconductor as a
coherent sum of even combinations of plane waves with momenta k⃗ and −k⃗, because due to time reversal symmetry, the
normal-superconductor hopping elements satisfy ttip,⃗k = ttip,−k⃗. This even combination becomes coupled to another
even combination of hole states, which can move back into the normal electrode. In a non s-wave superconductor,
the superconducting gap changes sign. If there are pairs of momenta such that ∆k⃗ = −∆k⃗′ and ttip,⃗k = ttip,k⃗′ , the
amplitudes of the injected electron will be equal for k⃗ and k⃗′, but, inside the superconductor, it will be coupled to
holes with amplitudes of opposite signs. Such a hole state cannot tunnel back into the normal electrode, and subgap
Andreev conductance will be fully suppressed. Local tunneling processes, as expected in an STM experiment, imply
momentum independent hopping elements, ttip,⃗k = t. Hence, we can expect that the subgap Andreev conductance
will be suppressed when a normal tip is coupled to generic p- and d-wave superconductors [44], and also in the case
of the f -wave, two valley superconductor considered here. The situation changes when there is intervalley scattering,
see below.

Tip induced Andreev states.

We can understand the formation of subgap Andreev states by the intervalley elastic scattering induced by the tip
by using the simple model shown in Fig. 1(a). The model reduces to a simple tight binding model:

H = Hsc1 +Hsc2 +Htip

Hsc1 = tsc1

0∑
n=−∞

(
c†e,nce,n−1 − c†h,nch,n−1

)
+∆sc1

0∑
n=−∞

c†e,nch,n + h.c.

Hsc2 = tsc2

n=∞∑
n=1

(
c†e,nce,n+1 − c†h,nch,n+1

)
+∆sc2

n=∞∑
n=1

c†e,nch,n + h.c.

Htip = tK,K′

(
c†e,0ce,1 − c†h,0ch,1

)
+ h.c. (S3)

The Green’s function at sites n = 0 and n = 1 of the system can be obtained from the Green’s functions at the same
sites in the absence of intervalley coupling:(

G0,0(ω) G0,1(ω)
G1,0(ω) G1,1(ω)

)
=

(
Ḡ−1

0,0(ω) tK,K′I2
tK,K′I2 Ḡ−1

1,1(ω)

)−1

(S4)

where Ḡ0,0(ω) and Ḡ1,1(ω) are surface Green’s functions associated to Hsc1 and Hsc2, and I2 is a 2 × 2 identity
matrix. By changing to a basis defined by ce,n ± ch,n, these matrix functions are:

Ḡ−1
0,0(ω) =

 ω−∆sc1

2 +

√
(ω2−∆2

sc1)(ω
2−∆2

sc1−4t2sc1)

2(ω+∆sc1)
0

0 ω+∆sc1

2 +

√
(ω2−∆2

sc1)(ω
2−∆2

sc1−4t2sc1)

2(ω−∆sc1)

 (S5)

and an equivalent expression for G−1
1,1(ω). Finally, for tsc1 = tsc2 = t and ∆sc1 = ∆sc2 = ∆, the Andreev states are

defined by the equations:

ω ∓∆

2
+

√
(ω2 −∆2)(ω2 −∆2 − 4t2)

2(ω ±∆)
= ±tK,K′ (S6)

For tK,K′ ≪ ∆, t this equation gives Andreev states near the edge of the superconducting gap, ω = ±∆, and for
tK,K′ = t the Andreev states move to the center of the gap, ω = 0. The parameter t describes a high energy cutoff
of the order of the bandwidth. For TBG near a magic angle, it is reasonable to expect that the perturbation due to
the tip in the contact regime is such that tK,K′ >∼ t, so that, in an f -wave superconductor, Andreev states near the
center of the gap will exist.
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Weak coupling conductance

Figure S1. Normal and Andreev reflection (top) and total conductance (bottom) in a STM tip-superconducting TBG junction
in the weak coupling regime. (a) With Fermi velocity mismatch and intervalley scattering. The parameters used are ttip =
10, tsc,K = tsc,K′ = 1, ttip,K = ttip,K′ = 1/

√
2, tK,K′ = 0.2, ∆K = 0.05, ∆K′ = ±0.05. (b) With Fermi velocity mismatch,

intervalley scattering and spin-orbit coupling. ∆K = 0.05, ∆K′ = ±0.02, others as in (a). The insets show a zoom near the
edge of the smaller gap.

We show in Fig. S1(a) results in the regime where the normal transmission of the junction is small. The intervalley
coupling has also been reduced. The Andreev reflection for the s-wave superconductor is notably suppressed. On the
other hand, the intervalley coupling still induces subgap states near the edges of the gap of the f -wave superconductor.
As a result, Andreev reflection persists, and leads to a peak in the junction conductance. Still, the conductance above
and below the gap are similar for s-wave and f -wave superconductor. Therefore, in this weak coupling regime, it
would be difficult for an experiment to tell apart the two pairings. As shown in Fig. 1(b), the transport characteristics
of f -wave and s-wave superconductors remain similar to each other when spin-orbit coupling is included.

S2. JOSEPHSON JUNCTIONS

Details of the model

The junction lattice is built following the same procedure as in Ref. [63]. To avoid border transport, we impose
periodic boundary conditions from top to bottom, which leads to a folding of the Brillouin zone. The folded band-
structure has more than two flat bands, e.g. four in Fig. 2(a). Following the notation of [63], we build a TBG nanotube
with chiral vectors (44,2)@(-44,-2), which has a twist angle of 4.41◦ and 2704 sites in its unit cell.

We use a tight binding Hamiltonian given by [58]

(S7)H0 = −
∑

i̸=j,m

γmm
ij (c†i,mcj,m + h.c.)−

∑
i,j,m

γm,m+1
ij (c†i,mcj,m+1 + h.c.) +

∑
i,m

VH(n)c†i,mci,m ,

where i, j run over the lattice sites and m is the layer index. H0 includes intralayer hopping to nearest-neighbors
only γmm

ij = t∥ and interlayer hopping that decays exponentially away from the vertical direction, γm,m+1
ij =

t⊥e
−(

√
r2+d2−d)/λ⊥ d2

r2+d2 , where d = 0.335 nm is the distance between layers, t∥ = 3.09 eV and t⊥ = 0.39 eV are
the intralayer and interlayer hopping amplitudes and λ⊥ = 0.027 nm is a cutoff for the interlayer hopping [58].
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We perform a scaling approximation, based on the fact that, within the continuum model, the bands of TBG
depend, to first order, on a dimensionless parameter [79],

α =
at⊥

2h̄vF sin(θ/2)
∝ t⊥

t∥θ
. (S8)

where a is the lattice constant, vF is the Fermi velocity. Thus, a small angle θ can be simulated with a larger one θ′,
doing the following transformations: t∥ → 1

λ t∥, a → λa, d → λd, with λ = sin( θ
′

2 )/sin(
θ
2 ) [61–63]. This approximation

reproduces well the low-energy bandstructure, as shown in Fig. 2(a) in the main text. It is worth noting that scaling
leads to a rigid blueshift of the bandstructure, of up to ∼ 20 meV, which we have removed in the figure. We use scaling
factors λ ∼ 4.

In Eq. (S7), the Hartree term is VH(n) = 2ρ(n)
ϵrLM

∑3
i=1 cos(Gi · r), where Gi are the reciprocal lattice vectors, r

the position, LM the moiré period, ϵr the dielectric constant due to hBN encapsulation and ρ(n) a filling dependent
parameter. Realistic values for the dielectric constant of hBN-encapsulated twisted bilayer graphene are usually in the
range ϵr = 4− 10, and our original choice was ϵr = 4. However, this value leads to band distortions so severe that, for
some twist angles, the gaps between the central narrow bands and the remote dispersive bands are closed. Therefore
it is not possible to form a proper SIS junction in these cases, because the bandgap for the insulating ‘I’ region is
not available. For this reason, the results for SIS junctions in Fig. 3 in the main text are calculated with ϵr = 7,
so the gaps are preserved, while the results for SNS and mixed junctions are calculated with ϵr = 4. However, it is
worth noting that, in contrast to SIS JJs, the current in SNS and mixed JJs depends only weakly on ϵ. We show this
explicitly in Fig. S2, which includes CPRs and critical currents for these JJs, for ϵr = 7. The results are qualitatively
the same as those in Fig. 3 in the main text.

Figure S2. (a) Current-phase relation in TBG SNS and mixed JJs. (b) Critical current versus twist angle for all configurations.
Everything equal to Fig. 3(a-b) in the main text, but with dielectric constant ϵr = 7 instead of 4.

To obtain ρ(n), we fit the bandstructure of the tight-binding model to the continuum model of Ref. [78] and do
a self-consistent calculation. Fig. S3 compares the resulting bandstructures obtained with the continuum and tight-
binding Hamiltonians including the Hartree term. The bands are in fair agreement. In particular, note that the very
narrow bands near -70 meV, which are similar in both cases, set the Fermi level, and over 95% of the critical current
comes from states in a small window around the gap which opens at the Fermi level.

Values of ρ for the Hartree term
1.04◦ 1.05◦ 1.06◦ 1.07◦ 1.08◦ 1.09◦ 1.10◦ 1.11◦ 1.12◦ 1.13◦ 1.14◦ 1.15◦ 1.16◦

n = −2.4; ϵ = 4 -1.022 -1.015 -1.008 -0.778 -0.776 -0.776 -0.77 -0.776 -0.77 -0.773 -0.766 -0.766 -0.769
n = +2.4; ϵ = 4 1.022 1.015 1.232 0.76 0.78 0.795 0.787 0.779 0.785 0.793 0.775 0.785 0.781
n = −2.4; ϵ = 7 -0.962 -0.961 -0.948 -0.946 -0.942 -0.934 -0.927 -0.921 -0.911 -0.9 -0.896 -0.887 -0.876
n = +2.4; ϵ = 7 0.97 0.971 0.971 0.966 0.961 0.956 0.944 0.936 0.93 0.917 0.907 0.896 0.888

Table I. Calculated values of the constant ρ as a function of twist angle, filling and dielectric constant.

To obtain the results in Fig. 3, we have exploited the fact that most of the critical current comes from states near
the superconducting gap ∆ = 1 meV, in fact, we have observed that states in the window [−2∆, 2∆] carry over 95%
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Figure S3. (a) Low energy TBG bands for a tight-binding model (red) and a continuum model, both including Hartree
interactions. Filling n = −2.4, θ = 1.06◦ and ϵr = 4. (b) There are four bands because the system is technically a nanotube, in
this case with a unit cell twice the size that of TBG, so its Brillouin zone results from the folding depicted in the figure. The
green lines are the momentum values allowed by the periodic boundary condition which closes the nanotube. For a detailed
discussion, see Ref. [63].

of the current. Therefore, we have approximated Eq. 1 in the main text as:

I ≈ ∂

∂ϕ

∑
|ϵi|<2∆

ϵi (S9)

For the calculation of the current in the mixed junction, spin is explicitly included in the model, so the Hamiltonian
in Eq. 2 is doubled. The f -wave electrode is at filling n = 2.4 and the s-wave electrode at n = −2.4. The interface
region interpolates smoothly between these two fillings. The gaps are similarly smoothed, see Fig. S4, in contrast to
SNS and SIS junctions, for which we use hard boundary conditions.

Figure S4. Superconducting gaps and filling at the interface between f -wave and s-wave electrodes in the mixed junction,
versus position in units of moiré period, measured from the center of the junction.

With regards to the lenght of the system, we have found that 24 moiré unit cells per electrode are enough to reach
convergent results, except in the mixed armchair junction, where 41 cells per electrode are needed. The low-energy
spectrum was obtain with the library ARPACK. The complexity was approximately O(N2) with N the number of
sites in the system. To verify the algorithm was working as intended, we first reproduced some of the results in
one-dimensional chains obtained with a Green’s functions technique in Ref. [80].

Toy model junction

In the main text we showed that the critical current in mixed f -wave/s-wave TBG junctions has a phase periodicity
of π, half of conventional junctions. This phenomenon was also found in Ref. [72] in one-dimensional mixed chains.
Fig. S5 depicts a toy model which reproduces the result: in a chain of atoms with spin-unpolarized Kitaev (p-wave)
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pairing [81] on one side and s-wave pairing on the other, the current is π-periodic. Note that the saw-tooth profiles
are a consequence of fully ballistic transport [47, 82].

Figure S5. (a) Schematic of a mixed one-dimensional toy model junction, with Kitaev pairing on one side and s-wave pairing
on the other. (b) CPR of the mixed junction, compared to SNS junctions. The parameters used are t = 1, ∆K = 0.1 and
∆s = 0.2. SNS junctions have five metallic atoms in the link.

Andreev spectra

Figure S6. Subgap Andreev spectra in TBG SNS junctions, as a function of the phase, for f -wave and s-wave pairings and for
electron (top row) and hole (bottom) domes, at different twist angles. ϵr = 4.

Figure S6 shows the subgap Andreev spectra in TBG junctions in the SNS configuration, for f -wave and s-wave
parings at different fillings and twist angles. As stated in the main text, these states carry most of the current in SNS
junctions. f -wave and s-wave have similar spectra, except for the quasi-flat levels that appear for f -wave pairing.
These states, which are localized near the edges of the sample, are precursors of Majorana modes, which will be
analyzed in a forthcoming publication. The spectrum changes fast near the magic angle, compare 1.06◦ and 1.09◦.
The fact that the critical current increases with twist angle in these junctions is seen here as the growth of the slope
of the Andreev levels with angle. There is marked electron-hole asymmetry.
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