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1.  INTRODUCTION 

Sustainable harvesting of natural populations re -
quires an in-depth understanding of population dy -
namics. Predictions of population responses to differ-

ent harvesting pressures and strategies must be 
based on knowledge of the natural processes influ-
encing population dynamics and how harvesting 
may influence these processes (Jonzen et al. 2003, 
Anderson et al. 2008). It is well known that environ-
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ABSTRACT: Achieving sustainable harvesting of natural populations depends on our ability to pre-
dict population responses to the combined effects of harvesting and environmental fluctuations 
while accounting for other internal and external factors that influence population dynamics in time 
and space. Here, we review recent research showing how spatial patterns and interspecific interac-
tions can influence population responses to harvesting in fluctuating environments. We highlight 
several pathways through which harvesting can, often inadvertently, influence the dynamics and 
resilience to environmental fluctuations of both harvested and surrounding non-harvested popula-
tions and species. For instance, spatial models have shown that harvesting is expected to influence 
the spatial synchrony of population fluctuations, both of the harvested species and its competitors, 
predators and prey, with implications for population extinction risk. Dispersal and interspecific in-
teractions can cause responses to harvesting in areas and species that are not themselves harvested. 
Harvesting that selectively targets certain groups of individuals, either intentionally or through for 
example spatially biased harvesting, can amplify environmentally induced population fluctuations 
by biasing the population structure towards individuals that are more sensitive to environmental 
variation. On the other hand, harvesting can in some cases buffer populations against the density-
dependent effects of harsh climatic conditions, which are probably more common than previously 
acknowledged. Recent advances in modeling are providing new predictions that are highly re -
levant under global warming and now need to be tested empirically. We discuss how knowledge of 
these pathways can be used to increase the sustainability of harvesting.  
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mental stochasticity, i.e. random fluctuations in the 
environment affecting all or groups of individuals 
similarly, plays a major role in the dynamics of most 
natural populations (den Boer 1981, Sæther & Engen 
2002), driving fluctuations in population abundance 
(Sæther 1997) and generally causing decreased long-
term population growth (Tuljapurkar 1982). In the 
coming years, climate warming is predicted to cause 
more variable weather (IPCC 2013) and thus greater 
environmental stochasticity, challenging the resili-
ence of populations, with the risk of triggering ex -
tinctions (Engen et al. 2002, Crespo & Cao-García 
preprint https://arxiv.org/abs/2008.09398). In addi-
tion to in fluencing the dynamics of populations 
directly, environmental stochasticity adds uncertainty 
to predictions of these dynamics, with the result that 
harvesting in the presence of environmental stochas-
ticity generally needs to be more conservative to be 
sustainable than what would be predicted from de -
terministic models (Beddington & May 1977, May et 
al. 1978, Lande et al. 1995, 1997) to avoid unexpected 
population crashes. 

Predicting population responses to harvesting in 
fluctuating environments is complicated by many of 
internal and external factors affecting population 
dynamics in time and space. For one, individuals 
within a population vary in age and traits, and har-
vesting is often non-random with respect to at least 
some of these traits (Apollonio et al. 2010, Kuparinen 
& Festa-Bianchet 2017). It is now well known that 
this can have substantial influences on harvested 
populations (Bunnefeld et al. 2011, Engen et al. 
2014). For example, size-selective harvesting in fish 
has been shown to affect growth rates and body size 
(Swain et al. 2007), age at maturity and reproductive 
allocation (Heino et al. 2015), potentially reducing 
overall reproductive rates and population viability 
(Hutchings 2005, Venturelli et al. 2009). Selective 
harvesting can also have substantial im pacts on 
demographic structure, such as age and sex structure 
(Langvatn & Loison 1999). This may impact popula-
tion dynamics (Stubberud et al. 2019, Sæther et al. 
2001, 2003) since individuals of different ages con-
tribute differently to future population growth 
(Sæther & Bakke 2000, Hauser et al. 2006). There-
fore, different aspects of population structure should 
be considered when developing harvesting models 
and strategies for structured populations (Bedding-
ton 1974, Milner et al. 2007). 

Furthermore, the environments that natural popu-
lations inhabit are not spatially homogenous, but 
rather tend to exhibit some level of spatial hetero-
geneity and structure. This means that the spatial 

location of individuals influences what environmen-
tal conditions they experience, with implications for 
the spatial distribution of individuals within and 
among populations. There is considerable evidence 
that harvesting can have important effects on the 
spatial structure of populations (Hsieh et al. 2008, 
Frank et al. 2016, Le Moullec et al. 2019). However, 
there has been relatively little focus on the spatial 
aspects of optimal harvesting theory for animal pop-
ulations, with the exception of the design and func-
tion of marine reserves (Neubert 2003, Costello & 
Polasky 2008). In particular, harvesting effects on 
population synchrony (and vice versa) have only very 
recently been considered. Shared environmental fluc -
tuations can cause synchronized population fluctua-
tions, with populations that are near each other 
showing more synchronous dynamics than those that 
are further apart (Moran 1953, Koenig 2002, Walter 
et al. 2017). This pattern has been observed in a wide 
range of taxa (Liebhold et al. 2004, Ranta et al. 2006), 
and synchronized population dynamics across large 
areas have been shown to increase the global extinc-
tion risk of populations (Heino et al. 1997, Earn et al. 
2000, Engen et al. 2002) as well as influencing the 
propagation of invasive species (Giometto et al. 2017) 
and the spread of diseases (Kausrud et al. 2007). Har-
vesting strategies that amplify population synchrony 
might therefore be less sustainable. 

Traditionally, harvesting models have been devel-
oped for single species of interest. However, in natu-
ral systems, species interact with each other through 
shared resources, disturbance competition, preda-
tor−prey interactions and mutualism. Thus, harvest-
induced changes in the dynamics of one species can 
influence the dynamics of other species in the system 
(Pauly et al. 1998, Smith et al. 2011). In fact, it has 
been shown that using the common harvesting strat-
egy of aiming for single-species maximum sustain-
able yield (Schaefer 1991) will lead to extinction of 
species in most marine ecosystems (Legović et al. 
2010). Multispecies models that consider interspe-
cific interactions therefore perform better than single-
species models of the same systems (Kinzey & Punt 
2009). Thus, to achieve sustainable harvesting, we 
must consider how species interactions and interspe-
cific density effects influence population dynamics. 
In this multispecies context, spatial dynamics may be 
especially important because co-occurrence in space 
and time is a prerequisite for many types of species 
interactions, and species interactions also modify the 
distribution and movement of species and their 
responses to climate change (Hillyer & Silman 2010, 
Urban et al. 2013, Godsoe et al. 2015). 
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Population dynamic responses to harvesting de -
pend not only on the harvesting itself but also on how 
it relates to environmental fluctuations and climate. 
Distinguishing effects of environmental variation and 
warming from effects of harvesting itself is often 
 difficult, particularly because they interact such that 
climate can cause harvesting schemes to have unex-
pected outcomes, and harvesting can increase popu-
lations’ sensitivity to environmental changes (Planque 
et al. 2010). In the coming years, the climate is ex -
pected to continue becoming warmer and more vari-
able, with more frequent extreme events (IPCC 2013). 
Because climate change can influence spatial distri-
butions and structure (Chen et al. 2011), dispersal 
and connectivity (Munday et al. 2009, Jenkins et al. 
2016, Evans et al. 2019), population synchrony 
(Hansen et al. 2020) and species interactions (Lord et 
al. 2017, Boukal et al. 2019), this adds to the chal-
lenge of developing sustainable harvesting strate-
gies. Both theoretical and empirical work has long 
suggested that, in density-regulated populations, the 
impacts of environmental stochasticity on population 
dynamics depend on characteristics of the fluctua-
tions in population density (May et al. 1978, Coulson 
2001), which, in turn, directly influence the sustain-
ability of different harvesting strategies (Sæther et al. 
1996). Such interactions between climate and density 
effects could cause harvesting to either amplify or 
dampen natural population fluctuations and should 
be studied in greater detail (Gamelon et al. 2019). 

In this study, we review recent research showing 
how spatial patterns and species interactions are ex -
pected to influence population responses to harvest-
ing in fluctuating environments. We identify several 
pathways through which harvesting can, often inad-
vertently, influence the demography and resilience 
to environmental fluctuations of both harvested and 
surrounding non-harvested populations and species 
(Fig. 1), and discuss how this knowledge can be used 
to improve the sustainability of harvesting. 

2.  INFLUENCE OF SPATIAL PATTERNS ON 
RESPONSES TO HARVESTING 

Populations are not evenly distributed across space 
but are influenced by the spatial structure of their 
environment (Planque et al. 2011), and spatial pro-
cesses play an important role in population dynam-
ics. For example, theory has shown that single loca-
tion populations experiencing an Allee effect (i.e. 
negative growth rate at low densities; Allee 1949) 
always eventually go extinct in the presence of envi-

ronmental fluctuations (Dennis 2002). However, 
when the spatial dimension is added, this is no longer 
the case (Dennis et al. 2016, Crespo & Cao-García 
preprint https://arxiv.org/abs/2008.09398). Dispersal 
of individuals can help regions to recover from popu-
lation depletion through immigration of individuals 
from non-depleted regions (Kuussaari et al. 1998, 
Péron et al. 2012), sometimes termed the rescue 
effect (Brown & Kodricbrown 1977). In this way, dis-
persal between different locations increases the 
resilience of populations to weather and other envi-
ronmental fluctuations, such that the amplitude of 
environmental fluctuations above which populations 
go extinct increases when the dispersal rate or the dis-
persal distance increases (Crespo & Cao-García pre -
print https://arxiv.org/abs/2008.09398). Thus, spatial 
considerations play a key role in the viability of pop-
ulations in the presence of environmental fluctua-
tions. Influences of different harvesting strategies on 
the spatial distribution of populations could therefore 
be expected to have major impacts on their sustain-
ability, and thus incorporating space into harvesting 
models is important. 

Simple harvesting models often assume propor-
tional or constant effort harvesting, in which the har-
vest offtake is directly proportional to the population 
abundance at any point in space, but in practice, har-
vesting is often regulated by quotas that operate on 
coarser scales and are less tightly correlated with 
local abundances (Fryxell et al. 2010). The spatial 
distribution of such harvesting is seldom directly pro-
portional to the spatial distribution of the harvested 
species and is often concentrated on smaller areas of 
a population’s range. This can be a direct conse-
quence of management policies, such as for popula-
tions that experience different harvesting pressures 
because they are spread across more than one hunt-
ing district or country (Apollonio et al. 2010), or pop-
ulations that exist partly within and partly outside 
protected areas (Moland et al. 2013, Poisson et al. 
2020). Harvesting or management units may vary 
greatly in area size and habitat quality, while dis-
tance, connectivity and barriers between hunting 
units may further determine spatiotemporal variation 
in population density and structure (Turgeon & 
Kramer 2012, Edelhoff et al. 2020). In addition, real-
ized harvesting pressures can vary greatly, both 
among and within management units, in ways not 
regulated by quotas and policies. For example, 
Peeters et al. (2022 in this Special) showed that real-
ized harvest effort for Svalbard reindeer Rangifer 
tarandus platyrhynchus differed among hunting 
units and was highly concentrated along the coast-
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line, despite population densities generally being 
higher inland, because hunters used motorized boats 
as a mode of transportation. Such harvesting bias can 
substantially alter population dynamics, particularly 
when dispersal among units is low (Péron et al. 2012). 

Dispersal is a key factor in determining how spatial 
structure in harvesting regimes influences popula-
tion dynamics. High levels of dispersal between 
areas will tend to homogenize population dynamics, 
weakening any spatial structure caused by harvest-
ing (Lande et al. 1998). Both constant dispersal rates 
and positive density-dependent dispersal rates, which 
are common in nature (Rodrigues & Johnstone 2014), 
have this homogenizing effect, because more indi-
viduals disperse from areas with high abundances. 
Dispersal could thus lessen the impact on heavily 
harvested areas through immigration of individuals 

from areas with less harvesting, thus reducing the 
risk of local extinction (Fogarty & Botsford 2007, 
Naranjo & Bodmer 2007). This effect of dispersal can 
be ex ploited by setting up patchworks of protected 
and non-protected areas for harvested populations 
(Mc Cullough 1996, Mockrin & Redford 2011). The 
protected areas, or no-take zones, can increase the 
sustainability of harvesting if the increased survival 
and reproduction within these areas, and subsequent 
dispersal of individuals to non-protected areas, is 
great enough to help offset the harvesting mortality 
(Fogarty & Botsford 2007). No-take areas are particu-
larly common in marine management and can in -
crease both sustainability and yield (Halpern 2003, 
Cabral et al. 2020). Such protected areas are ex -
pected to be the most successful when each area is 
large enough to maintain a viable population, but 
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Fig. 1. Population responses to harvesting depend on spatial patterns, species interactions and density dependence. This fig-
ure illustrates some of the main pathways discussed in this study through which spatial patterns (blue; see Section 2), species 
interactions (red; Section 3) and density dependence (purple; Section 4) alter harvesting effects on population dynamics, syn-
chrony and resilience to environmental fluctuations. Arrows between boxes show effects of the factor or process in one box on 
the other. Arrows aimed at other arrows show how factors or processes modify the effects represented by the receiving arrows. 
Labels on arrows describe mechanisms through which the effects represented by the arrows function. Note that this is not a 
complete representation of possible or realized pathways, but a simplified overview of main points discussed in the text
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small enough to promote rapid dispersal of individu-
als to surrounding harvested areas as local popula-
tions grow (McCullough 1996). On the other hand, if 
a heavily harvested area becomes a sink population, 
with a steady stream of individuals from other areas 
moving into the higher mortality area, this could 
have detrimental effects on the full metapopulation, 
increasing global extinction risk (Novaro et al. 2005). 
Knowledge of dispersal pathways and population 
connectivity is thus a crucial prerequisite for success-
ful harvesting management (Brook & Whitehead 2005, 
Fogarty & Botsford 2007, Costello & Polasky 2008). 

Climate change and habitat loss are causing spe-
cies distributions to shift and contract (Chen et al. 
2011, VanDerWal et al. 2013, Herrera-R et al. 2020), 
and species are encountering new dispersal barriers 
(Jenkins et al. 2016, Peeters et al. 2020). Such changes 
to dispersal pathways and spatial structure can alter 
the effects of harvesting regimes by, for instance, 
weakening the connection between unharvested and 
harvested areas and thus weakening the rescue ef -
fect from dispersal, or causing populations to move 
out of protected areas (Monzón et al. 2011). Range 
contractions can increase the danger of overharvest-
ing by allowing local densities of a species to stay 
high enough to allow profitable harvesting, even as 
total numbers are rapidly declining (Burgess et al. 
2017). This highlights the need for dynamic manage-
ment regimes that can be adjusted as the underlying 
conditions change. 

In many species, the spatial distribution of individ-
uals is influenced by their age, sex, breeding status, 
personality or other traits (Loe et al. 2006, Morita et 
al. 2010, Campioni et al. 2012, Mourier et al. 2013). 
Accordingly, spatial patterns in harvesting pressure 
can cause different levels of harvest mortality in dif-
ferent groups. For example, a recent study on moose 
showed that individuals that spent more time in open 
grasslands were more likely to be shot, but these 
individuals also produced more and heavier calves 
(Ofstad et al. 2020). In white-tailed deer Odocoileus 
virginianus, habitat selection was found to be sex- 
and age-specific, with differences in hunting mortal-
ity risk between different areas (Haus et al. 2020). 
Over time, such spatial structure in harvest mortality 
can also cause changes in habitat use that can further 
influence population dynamics (Milner et al. 2007, 
Frank et al. 2017, Lefebvre et al. 2017). Knowledge of 
spatial structure and habitat use can improve man-
agement and harvesting strategies, for example by 
avoiding harvest in areas used by age classes of high 
value to the population (Edwards & Plagányi 2011) or 
for reproduction (Ellis & Powers 2012, Grüss & Robin-

son 2015), and supporting compensatory immigra-
tion mitigating the recovery of depleted populations 
(Stoner et al. 2006, Turgeon & Kramer 2012). 

Spatially extended harvesting also affects the spa-
tial synchrony of population fluctuations. Theoretical 
models have shown that proportional harvesting, i.e. 
harvesting the same fraction of the local population 
at each locality, increases the spatial scale of popula-
tion synchrony by reducing the effects of density reg-
ulation (Engen et al. 2018a,b, Jarillo et al. 2018). On 
the other hand, increasing harvesting in high-abun-
dance regions leads to decoupling between the 
regions, reducing the spatial scale of population syn-
chrony (Engen et al. 2018a). Thus, choosing among 
different spatial structures in harvesting strategies 
can have major impacts on the spatial patterns and 
synchrony of population dynamics. Although these 
theoretical results still need to be tested empirically, 
the temporal and spatial scales of fishing mortality 
are sufficient to drive population synchrony (Frank et 
al. 2016), and increased synchrony in growth caused 
by harvesting has been demonstrated in a recent 
study of New Zealand fisheries (Morrongiello et al. 
2021). Because synchrony in population dynamics in -
creases the risk of simultaneous declines in popula-
tion size over large areas, and thus global extinction 
risk, these results demonstrate that the commonly re -
commended strategy of spatially proportional harvest-
ing could increase population extinction risk more than 
previously predicted. This aspect of spatial harvest-
ing strategies has only recently received attention, 
but these results indicate that spatial synchrony 
should be considered when comparing different har-
vesting strategies. In addition, it has been shown that 
in creased spatial correlation in abundance can be an 
important early-warning signal of shifts to alternative 
stable states in ecosystems, indicating that a greater 
focus on spatial correlation could help us to avoid 
catastrophic effects of overharvesting in changing 
climate conditions (Dakos et al. 2010). 

Stochastic modeling of spatial population dynamics 
and harvesting is quite challenging because such 
models must account not only for intrinsic population 
dynamics but also dispersal of individuals and spatial 
patterns of environmental stochasticity. However, 
such models provide a valuable opportunity to incor-
porate spatial aspects into evaluation of harvest strate-
gies. Engen et al. (2018b) developed such a model for 
2 age classes with density dependence within the 
juvenile class and showed how the optimal strategy 
for maximizing mean annual yield depends on the 
relative economic value of the 2 age classes. When 
one age class is much more valuable than the other, 
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the optimal strategy is to harvest only that age class. 
As environmental stochasticity increases, the range 
of relative economic values for which it is optimal to 
harvest both age classes also increases, while opti-
mal harvesting rates decrease. Models of this type 
could be used to inform optimal harvesting strategies 
in many other spatial contexts and will likely be 
important for future harvesting theory. 

3.  INFLUENCE OF SPECIES INTERACTIONS ON 
RESPONSES TO HARVESTING 

Harvested populations do not live in isolation but 
are embedded in natural communities in which they 
interact with other species. This complicates the pro-
cess of predicting population responses to harvesting 
because changes in the abundance or dynamics of 
one species can trigger complex feedback loops and 
indirect effects on both the harvested and surround-
ing species. Management and harvest strategies 
based on single-species models can have dramatic 
consequences on multi-species systems, including 
species extinctions (Legović & Geček 2010, Legović 
et al. 2010, Tromeur & Doyen 2019). For this reason, 
more ecosystem-based management approaches have 
been proposed. Ideally, an ecosystem-based man-
agement approach should recognize the full array of 
interactions in an ecosystem, including humans, in -
stead of considering single-species or ecosystem 
services in isolation (Katsanevakis et al. 2011). Eco-
system-based approaches are now broadly accepted 
as crucial for marine conservation and resource man-
agement (Levin et al. 2009), and several frameworks 
for multi-species models have been suggested as 
tools to improve predictions of harvest effects in an 
ecosystem context (Plagányi et al. 2014). However, 
predicting the impacts of harvesting re quires an 
understanding of the interspecific interactions in a 
system, and studies have shown that there are multi-
ple ways in which these can influence the outcomes 
of harvesting. 

Interspecific interactions can exacerbate the mor-
tality caused by harvesting. For example, Gehr et al. 
(2018) found that hunter avoidance behavior in roe 
deer Capreolus capreolus exposed them to greater 
risk of predation by Eurasian lynx Lynx lynx. The 
lynx, in turn, responded by increasing predation on 
deer, causing superadditive hunting mortality. The 
classical examples of harvesting impact in systems of 
interacting species are from systems in which re -
moval of a top predator initiates a trophic cascade, 
such as when overharvesting of sea otters Enhydra 

lutris in Alaska caused explosive growth of their 
main prey, sea urchins Strongylocentrotus spp. This 
led to overgrazing of kelp, and consequently impacted 
the numerous species that depend on the habitat cre-
ated by kelp forests (Estes & Duggins 1995, Silliman 
& Angelini 2012). In this way, harvesting of a single 
species can have serious impacts on species that are 
not themselves harvested, destabilize whole commu-
nities and seriously reduce their resilience to climate 
change (Chaverra et al. 2019). Moreover, dispersal or 
migration can extend the interspecific effects of har-
vest to areas that are not harvested. For example, 
Anderwald et al. (2015) showed that harvesting of 
migratory red deer Cervus elaphus outside a national 
park had a positive effect on ibex Capra ibex and 
chamois Rupicapra rupicapra within the park by 
reducing the number of red deer migrating back into 
the park, thereby lessening interspecific competition. 
Thus, spatial and interspecific effects need to be con-
sidered together to fully understand potential im -
pacts on harvesting. 

Predicting the overall outcome of harvesting be -
comes even more challenging when multiple inter-
acting species are harvested. In such cases, the 
impact of a given harvest rate on one species can 
depend on the harvest rates of other species, since 
these rates influence the abundance of the first spe-
cies’ competitors, predators or prey (Dunn et al. 
2017). It is a well-known principle that simultaneous 
harvesting of a predator and its prey increases the 
proportion of prey at equilibrium (Volterra 1928, 
Weisberg & Reisman 2008). However, the overall 
impact of harvesting becomes more complicated to 
predict as the number of target species increases, 
and appropriate reference points for harvesting will 
depend on both species interactions and environ-
mental effects (Kumar et al. 2017). This is particularly 
relevant in fisheries management, since marine sys-
tems typically consist of multiple harvested species. 
The realization that it is not generally feasible to 
maximize the yield from all species simultaneously 
without causing extinctions (Thorpe 2019) has caused 
increased focus on the ecosystem perspective for har-
vest management, and many fisheries models now 
aim to account for at least some interspecific interac-
tions (Plagányi 2007); however, developing sustain-
able harvesting strategies for multispecies systems is 
still challenging (Fogarty 2014, Law et al. 2016, 
Thorpe 2019). 

Species that share the same environment could be 
expected to display similar patterns of population 
synchrony. However, Marquez et al. (2019) showed 
that population synchrony varied among fish species 
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within the Barents Sea, with species that live longer 
generally being synchronized over larger areas, poten-
tially because such species tend to show weaker den-
sity regulation (Lande et al. 1999, Herrando-Pérez et 
al. 2012). On the other hand, both theoretical (Ripa & 
Ranta 2007) and empirical (Kent et al. 2007, Haynes 
et al. 2009) studies have revealed that spatial popula-
tion synchrony can be transferred between species 
via direct or indirect interspecific interactions. For 
example, it is well known that predation by mobile 
predators can drive spatial synchrony in prey popula-
tions (Ims 1990, Ims & Andreassen 2000, Liebhold et 
al. 2004). As mentioned previously, spatial synchrony 
is known to influence global extinction risk (Heino 
et al. 1997, Earn et al. 2000); patterns of spatial syn-
chrony are expected to change under climate warm-
ing (Hansen et al. 2020); and harvesting affects spa-
tial synchrony (Engen et al. 2018a,b, Jarillo et al. 
2018). Combined, these observations highlight the 
im portance of understanding the links between har-
vesting, environmental fluctuations, interspecific inter -
actions and spatial population synchrony of species 
within an ecosystem for our ability to evaluate poten-
tial ecosystem responses to harvesting. 

Recent theoretical work has shown that competi-
tion between 2 species can increase or decrease the 
spatial population synchrony of each of the competi-
tors (Jarillo et al. 2018, Lee et al. 2020) depending on 
the correlation between the environmental noise 
affecting the competitors, their growth rates, disper-
sal dynamics and intraspecific and interspecific com-
petition strengths. The spatial scale of the synchrony 
between competing populations is closely related to 
the spatial scale of the within-species synchrony (Lee 
et al. 2020). In these competitive systems, the propor-
tional harvesting of one of the competitors increases 
the spatial scale of population synchrony of the har-
vested species, but also of the unharvested competi-
tor (Jarillo et al. 2018). 

Theory predicts that, in bottom-up regulated food 
webs, spatial population synchrony of species should 
increase with trophic level, so any predator would 
have a larger spatial scale of population synchrony 
than its prey (Jarillo et al. 2020). This result has been 
experimentally observed in bacterial communities 
(Kent et al. 2007). In such bottom-up regulated 
 predator−prey systems, proportional harvesting of 
the prey increases the spatial scale of population syn-
chrony of its predator while proportional harvesting 
of the predator reduces the scale of synchrony of its 
prey (Jarillo et al. 2020). In general, increases in the 
spatial scale of population synchrony follow the 
directional propagation of fluctuations through food 

webs. Thus, depending on the structure and func-
tioning of a food web, harvesting any species can 
alter the spatial scaling of all species across the food 
web, with potential implications for extinction risk. 
Harvesting effects on population synchrony may be 
especially important as the climate changes because 
expected increases in environmental stochasticity 
add to the risk of global extinction when small popu-
lation sizes are synchronized over large areas. 

4.  INFLUENCE OF HARVESTING ON 
 POPULATION STABILITY IN FLUCTUATING 

ENVIRONMENTS 

Theoretical modeling and empirical analyses have 
shown that both harvesting and environmental sto-
chasticity induce population fluctuations and thus 
ultimately increase extinction risk (Lande et al. 1995, 
Fryxell et al. 2010). In addition, several lines of evi-
dence have suggested that the combined effects of 
harvesting and environmental change can be syner-
gistic, with greater extinction risk and faster popula-
tion declines when both these stressors are present 
than what would be predicted from addition of the 
separate effects of each stressor (Mora et al. 2007, 
Fuller et al. 2015, Gamelon et al. 2019). In short, har-
vesting reduces the effective growth rate of popula-
tions, often making them less resilient to environ-
mental fluctuations (Crespo & Cao-García preprint 
https://arxiv.org/abs/2008.09398). 

Harvesting that selectively targets certain groups 
of individuals can also amplify environmentally in -
duced population fluctuations by biasing the popula-
tion structure towards individuals that are more sen-
sitive to environmental variation. This effect has 
been observed in multiple fish stocks (Hsieh et al. 
2006, Shelton & Mangel 2011, Rouyer et al. 2012). For 
example, in age-structured populations, removal of 
larger, older individuals through harvesting can lead 
to populations consisting mainly of smaller, younger 
individuals (Anderson et al. 2008), which often have 
higher natural mortality risk and lower reproductive 
rates (Berkeley et al. 2004). Offspring produced by 
younger individuals have also been shown to have 
lower survival potential than those from older indi-
viduals in some systems (Berkeley et al. 2004, Bobko 
& Berkeley 2004). Conversely, careful use of age-, 
sex- or size-selective harvesting can also help to sta-
bilize populations. In ungulate population manage-
ment, harvest strategies are often designed to target 
more calves and young individuals to maximize the 
mean annual yield or promote stability in population 
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size and harvest over time (Sæther et al. 2001, Apol-
lonio et al. 2010, Strand et al. 2012). Similarly, har-
vest restrictions and selective harvesting methods, 
such as gill nets in marine systems, could be utilized 
to promote recovery of natural size- and age struc-
ture after years of selective harvesting (Birkeland & 
Dayton 2005). 

Because effects of environmental stochasticity can 
depend on population density, leading to nonlinear 
responses in population growth (Royama 1992), pop-
ulation size reductions caused by harvesting may 
alter population stability through changes in density-
dependent processes. Per capita resource availability 
and risk of disease transmission are examples of den-
sity-dependent factors where increasingly negative 
effects are typically observed at higher densities, and 
reduction in population size caused by harvest can 
then be compensated for by decreases in natural 
mortality or increases in reproductive output (Boyce 
et al. 1999). In certain cases, this can lead to a situa-
tion in which harvest mortality actually causes an 
increase in population size, sometimes called the 
‘hydra effect’ (Abrams 2009). Density-dependent 
effects of environmental drivers have been found in 
many species where poor environmental conditions 
restrict access to resources (such as food or space) 
and lead to high intraspecific competition (Barbraud 
& Weimerskirch 2003, Gamelon et al. 2017, Hansen 
et al. 2019). Population-level consequences of such 
nonlinear responses to the environment have re -
cently been studied in Svalbard reindeer Rangifer 
tarandus platyrhynchus, where populations tend to 
crash when extreme winter climate events occur at 
high reindeer densities. Increased frequencies of 
such events due to global warming prevent over-
abundance and can therefore actually dampen popu-
lation fluctuations because of a reduced risk of cli-
mate-induced starvation and population crashes 
(Hansen et al. 2019). Similarly, overabundance and 
population crashes can be avoided by population 
regulation through harvesting (McShea et al. 1997). 
Thus, while harvesting in some cases can amplify 
population fluctuations caused by environmental sto-
chasticity (Gamelon et al. 2019), it can also reduce the 
density-dependent effects of harsh climatic condi-
tions, thereby stabilizing population fluctuations and 
decreasing the risk of extinction (Peeters et al. pre print 
https://doi.org/10.22541/au.161311924.44472260/v1). 

With more variable weather and greater environ-
mental stochasticity predicted due to global warming 
(IPCC 2013), there is clearly an urgent need to better 
understand the relative contributions of climate 
 forcing, harvesting and their interactions to popula-

tion dynamics. Synergistic effects of environmental 
changes and harvest on population dynamics, and 
the complexity of indirect pathways through which 
they can influence populations, intensify the chal-
lenge of disentangling these effects. In addition, en -
vironmental changes and harvest can often have 
similar effects on populations, such as smaller body 
size being favored by both climate warming and har-
vest in many species (Gardner et al. 2011, Oke et al. 
2020). This makes it particularly difficult to distinguish 
the effects of harvest from those of environmental 
variation and change, adding to the uncertainty of 
harvesting outcomes. The unclear distinction be -
tween different drivers calls for close collaboration 
between theoreticians, empiricists and managers. 
New theoretical harvesting models that incorporate 
both space and environmental fluctuations are being 
developed (Engen 2017, Engen et al. 2018a,b), creat-
ing opportunities to explore the combined impacts of 
different mechanisms. Empirical testing of results 
from such models is crucial to continued progress in 
this field. 

5.  HARVESTING IN FLUCTUATING 
 ENVIRONMENTS 

As shown in this paper, population responses to 
harvesting in fluctuating environments depend on a 
number of different factors, working through direct 
and indirect pathways. What does this mean for sus-
tainable harvesting? Obviously, we cannot expect to 
fully understand all drivers of population dynamics 
and their interactions before we harvest, but aware-
ness of effects such as those described here can help 
to identify potential issues before they arise, and also 
provide valuable opportunities to increase the sus-
tainability of harvesting as the environment becomes 
more variable. One important question to consider is 
whether the target population shows strong popula-
tion structure (e.g. age or stage structure) in vital 
rates, behavior or habitat use. If so, is the planned 
harvest scheme likely to influence this structure, and 
could something be done to minimize this effect? 
Second, what is the spatial structure of the popula-
tion and is it linked to age or stage structure? What 
are the dispersal abilities and dispersal patterns of 
the population? Careful consideration of how the 
proposed harvest relates to the spatial structure and 
what dispersal might mean for responses to harvest 
are important. Establishment of no-take zones or 
adjusting quotas to account for hunter preferences 
and geographic bias are examples of measures that 
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can be taken. If the planned harvest covers large 
extents of the spatial distribution of a species within 
a region, population synchrony should also be con-
sidered, keeping in mind that decreasing harvesting 
in low-abundance locations can help to avoid popu-
lation synchronization. Particularly in cases where 
more than one species within an area are subject to 
harvest, multispecies harvesting models might be 
necessary to establish sustainable harvesting strate-
gies. The development of multispecies or ecosystem 
models for fisheries has therefore become more com-
mon in recent years, although their use in practical 
management is still limited (Fogarty 2014, Säterberg 
et al. 2019). Because interspecific interactions can also 
influence responses to harvesting when only one spe-
cies is harvested, it is worth keeping this possibility 
in mind when harvest strategies produce unexpected 
population responses. In specific cases where one or 
more of these issues come up, targeted modeling can 
be extremely useful to explore potential consequences 
of different harvesting strategies. 

Clearly, sustainable harvesting in fluctuating envi-
ronments depends on a thorough understanding of 
internal and external drivers of stochastic population 
dynamics. However, due to the range of factors that 
can influence population responses to harvest, their 
complex interactions and the amount of data re quired 
to estimate them, most harvesting decisions must 
be based on incomplete knowledge. One very useful 
frame work for developing and adjusting harvesting 
strategies in this situation is adaptive management, in 
which the modeling that underlies a choice of harvest 
strategy is updated as data on population re sponses to 
the harvesting become available, leading to iteratively 
updated harvest strategies and increased knowledge 
of harvested systems (Walters & Hilborn 1978, John-
son et al. 2015). Adaptive management of this type 
also supports sustainable harvesting in changing envi-
ronments, since they allow strategies to be continu-
ously adjusted as needed. In general, flexible and 
dynamic strategies and measures (such as dynamic 
pro tected areas; Cashion et al. 2020, Rassweiler et al. 
2020) are likely to be necessary as the climate contin-
ues to warm and environments become more variable. 

6.  CONCLUSIONS AND FUTURE PERSPECTIVES 

Spatial population structure, population synchrony 
and demographic structure are all characteristics of 
natural populations that can influence their resili-
ence in the face of environmental fluctuations and 
change. As we have shown in this paper, harvesting 

can affect each of these characteristics in several, 
often unexpected or unintended, ways. Impacts of 
harvesting are not limited to the harvested popula-
tions, but can also influence non-harvested ones that 
are linked to the harvested populations through dis-
persal of individuals or interspecific interactions. In 
addition, interactions between different drivers of 
population dynamics, including harvesting, are likely 
common in nature. Thus, harvesting has the potential 
to elicit unexpected responses and leave populations 
more vulnerable to environmental fluctuations and 
climate change effects. However, knowledge of the 
different mechanisms and pathways involved can be 
used to minimize the negative effects of harvesting 
and improve its sustainability. Theoretical models 
play an important role in exploring and disentan-
gling these pathways, and must be followed up by 
empirical tests of their results. Based on the research 
reviewed here, we believe 2 important priorities for 
the coming years should be to continue to clarify the 
relationship between harvesting and climate effects 
in different systems and situations, and to perform 
empirical tests of new theoretical results on harvest-
induced synchrony, to see how common these mech-
anisms that could increase extinction risk are in nat-
ural systems. As our understanding of the mechanisms 
underlying population responses to harvesting con-
tinues to improve and the climate continues to warm, 
harvesting strategies that can be adjusted as our 
knowledge increases and as the environment changes 
can decrease the risk of driving populations to ex -
tinction through harvesting. 
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